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Abstract: We provide a direct world-sheet derivation of the couplings of NS-NS and

R-R fluxes to various types of D-branes (including instantonic ones) by evaluating disk

amplitudes among two open string vertex operators at a generic brane intersection and

one closed string vertex representing the background fluxes. This world-sheet approach is

in full agreement with the derivation of the flux couplings in the brane effective actions

based on supergravity methods, but it is applicable also to more general brane configu-

rations involving fields with twisted boundary conditions. As an application, we consider

an orbifold compactification of Type IIB string theory with fractional D-branes preserving

N = 1 supersymmetry and study the flux-induced fermionic mass terms both on space-

filling branes and on instantonic ones. Our results show the existence of a relation between

the soft supersymmetry breaking and the lifting of some instanton fermionic zero-modes,

which may lead to new types of non-perturbative couplings in brane-world models.
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1. Introduction

A promising scenario for phenomenological applications of string theory and realistic model

building is provided by four dimensional compactifications of Type II string theories pre-

serving N = 1 supersymmetry in the presence of intersecting or magnetized D-branes [1 – 3].

In these compactifications, gauge interactions similar to those of the supersymmetric ex-

tensions of the Standard Model can be engineered with space-filling D-branes that partially

or totally wrap the internal six-dimensional space. By introducing several stacks of such

D-branes one can realize adjoint gauge fields for various groups by means of the massless

excitations of open strings that start and end on the same stack, while open strings that
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stretch between different stacks provide bi-fundamental matter fields. On the other hand,

from the closed string point of view, (wrapped) D-branes are sources for various fields of

Type II supergravity, which acquire a non-trivial profile in the bulk. Thus the effective

actions of these brane-world models describe interactions of both open string (boundary)

and closed string (bulk) degrees of freedom and have the generic structure of N = 1 su-

pergravity in four dimensions coupled to vector and chiral multiplets. Several important

aspects of such effective actions have been intensively investigated over the years from

various points of view [1 – 3].

One of the main ingredients of these string compactifications is the possibility of adding

internal antisymmetric fluxes both in the Neveu-Schwarz-Neveu-Schwarz (NS-NS) and in

the Ramond-Ramond (R-R) sector of the bulk theory [4 – 6]. These fluxes may bear impor-

tant consequences on the low-energy effective action of the brane-worlds, such as moduli sta-

bilization, supersymmetry breaking and, possibly, also the generation of non-perturbative

superpotentials. At a perturbative level internal 3-form fluxes are encoded in a bulk su-

perpotential [7, 8] from which F-terms for the various compactification moduli can be

obtained using standard supergravity methods. These terms can also be interpreted as

the θ2 “auxiliary” components of the kinetic functions for the gauge theory defined on the

space-filling branes, and thus are soft supersymmetry breaking terms for the brane-world

effective action. These soft terms have been computed in refs. [9] - [16] and their effects,

such as flux-induced masses for the gauginos and the gravitino, have been analyzed in var-

ious scenarios of flux compactifications relying on the structure of the bulk supergravity

Lagrangian and on κ-symmetry considerations.

In addition to fluxes, another important issue to study is the non-perturbative sector

of the effective actions coming from string theory compactifications [17, 18]. Only in the

last few years, concrete computational techniques have been developed to analyze non-

perturbative effects using systems of branes with different boundary conditions [19, 20].

These methods not only allow to reproduce [20 – 24] the known instanton calculus of (su-

persymmetric) field theories [25], but can also be generalized to more exotic configurations

where field theory methods are not yet available [26 – 47]. The study of these exotic instan-

ton configurations has led to interesting results in relation to moduli stabilization, (partial)

supersymmetry breaking and even fermion masses and Yukawa couplings [26, 27, 34]. A

delicate point about these stringy instantons concerns the presence of neutral anti-chiral

fermionic zero-modes which completely decouple from all other instanton moduli, contrar-

ily to what happens for the usual gauge theory instantons where they act as Lagrange

multipliers for the fermionic ADHM constraints [20]. In order to get non-vanishing con-

tributions to the effective action from such exotic instantons, it is therefore necessary to

remove these anti-chiral zero modes [30, 31] or lift them by some mechanism [36]. The

presence of internal background fluxes may allow for such a lifting and points to the exis-

tence of an intriguing interplay among soft supersymmetry breaking, moduli stabilization,

instantons and more-generally non-perturbative effects in the low-energy theory which may

lead to interesting developments and applications. Some preliminary results along these

lines have recently appeared in ref. [46].

So far the consequences of the presence of internal NS-NS or R-R flux backgrounds

– 2 –



J
H
E
P
1
0
(
2
0
0
8
)
1
1
2

onto the world-volume theory of space-filling or instantonic branes have been investigated

relying entirely on space-time supergravity methods [48 – 53], rather than through a string

world-sheet approach.1 In this paper we fill this gap and derive the flux induced fermionic

terms of the D-brane effective actions with an explicit conformal field theory calculation

of scattering amplitudes among two open string vertex operators describing the fermionic

excitations at a generic brane intersection and one closed string vertex operator describing

the background flux. Our world-sheet approach is quite generic and allows to obtain

the flux induced couplings in a unified way for a large variety of different cases: space-

filling or instantonic branes, with or without magnetization, with twisted or untwisted

boundary conditions. Indeed, the scattering amplitudes we compute are generic mixed

disk amplitudes, i.e. mixed open/closed string amplitudes on disks with mixed boundary

conditions, similar to the ones considered in refs. [55 – 58, 21].

Besides being interesting from a technical point of view, our approach not only repro-

duces correctly all known results but can be applied also to cases where the supergravity

methods are less obvious, like for example to study how NS-NS or R-R fluxes couple to fields

with twisted boundary conditions or how they modify the action which gives the measure

of integration on the moduli space of instantons. Finding the flux-induced soft terms on

instantonic branes of both ordinary and exotic type is a necessary step towards the investi-

gations of the non-perturbative aspects of flux compactifications we have mentioned above.

In this paper, after discussing the general conformal field theory calculation of the flux

couplings to boundary fermions in ten dimensions, we select a specific compactification of

Type IIB string theory that leads to a brane-world theory with N = 1 supersymmetry

in four dimensions. In particular we consider Z2 × Z2 orbifold of type IIB on T 6 with

fractional D-branes. In this compactification scheme string theory remains calculable and

our explicit world-sheet approach is viable; moreover the existence of inequivalent types of

fractional branes gives rise to a quiver structure allowing to engineer gauge theories with

interesting contents, such as pure super Yang-Mills theory or SQCD. The non-perturbative

side can then be explored by means of instantonic fractional branes which can be of both

ordinary or exotic type.

More specifically, this paper is organized as follows: in section 2 we describe in detail

the world-sheet derivation of the flux induced fermionic terms of the D-brane effective

action from mixed open/closed string scattering amplitudes. The explicit results for various

unmagnetized or magnetized branes as well as for instantonic branes are spelled out in

section 3 in the case of untwisted open strings and in section 4 in some case of twisted

open strings. The flux-induced fermionic couplings are further analyzed for the Z2 × Z2

orbifold compactification which we briefly review in section 5. Later in section 5.2 we

compare our world-sheet results for the flux couplings on fractional D3-branes with the

effective supergravity approach to the soft supersymmetry breaking terms, finding perfect

agreement. In section 6 we exploit the generality of our world-sheet based results to

determine the soft terms of the action on the instanton moduli space, and finally in section 7

we summarize our results. Our conventions on spinors, on the Z2 ×Z2 orbifold and on the

flux couplings for wrapped fractional D9-branes are contained in the appendix.

1For some recent developments using world-sheet methods see ref. [54].
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VΘ VΘ′ VΘ VΘ′

a) b)

~ϑ = 0 ~ϑ 6= 0

VF , VHVF , VH

Figure 1: Quadratic coupling of untwisted, a), and twisted, b), open string states to closed string

fluxes.

2. Flux interactions on D-branes from string diagrams

In this section, using world-sheet methods, we study the interactions between closed string

background fluxes and massless open string excitations living on a generic D-brane inter-

section. We focus on fermionic terms (like for example mass terms for gauginos), but our

conformal field theory techniques could be applied to other terms of the brane effective ac-

tion. In order to keep the discussion as general as possible, we adopt here a ten-dimensional

notation. Later, in sections 3 and 4 we will rephrase our findings using a four-dimensional

language suitable to discuss compactifications of Type IIB string theory to d = 4.

At the lowest order, the fermionic interaction terms can be derived from disk 3-point

correlators involving two vertices describing massless open-string fermions and one closed

string vertex describing the background flux, as represented in figure 1. At a brane inter-

section massless open string modes can arise either from open strings starting and ending

on the same stack of D-branes, or from open strings connecting two different sets of branes.

In the former case the open string fields satisfy the standard untwisted boundary condi-

tions and the corresponding vertex operators transform in the adjoint representation of the

gauge group. In the latter case the string coordinates satisfy twisted boundary conditions

characterized by twist parameters ϑ and the associated vertices carry Chan-Paton factors

in the bi-fundamental representation of the gauge group; by inserting twisted open string

vertices, one splits the disk boundary into different portions distinguished by their bound-

ary conditions and Chan-Paton labels, see figure 1b). We now give some details on these

boundary conditions and later describe the physical vertex operators and their interactions

with R-R and NS-NS background fluxes.

2.1 Boundary conditions and reflection matrices

The boundary conditions for the bosonic coordinates xM (M = 0, . . . , 9) of the open string

are given by
(
δMN ∂σx

N + i(Fσ)MN ∂τx
N
)∣∣∣

σ=0,π
= 0 , (2.1)
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where δMN is the flat background metric2 and

(Fσ)MN = BMN + 2πα′ (Fσ)MN (2.2)

with BMN the anti-symmetric tensor of the NS-NS sector and (Fσ)MN the background

gauge field strength at the string end points σ = 0, π. Introducing the complex variable

z = eτ+iσ and the reflection matrices

Rσ =
(
1 −Fσ

)−1 (
1 + Fσ

)
, (2.3)

the conditions (2.1) become

∂xM
∣∣∣
σ=0,π

= (Rσ)MN ∂xN
∣∣∣
σ=0,π

. (2.4)

The standard Neumann boundary conditions (i.e. Rσ = 1) are obtained by setting Fσ = 0,

whereas the Dirichlet case (i.e. Rσ = −1) is recovered in the limit Fσ → ∞. A convenient

way to solve (2.4) is to define multi-valued holomorphic fields XM (z) such that

XM (e2πiz) =
(
R−1

π R0

)M
N
XN (z) ≡ RM

N XN (z) (2.5)

where R ≡ R−1
π R0 is the monodromy matrix. Then, putting the branch cut just below the

negative real axis of the z-plane, the conditions (2.4) are solved by

xM (z, z) = qM +
1

2

[
XM (z) +

(
R0

)M
N
XN (z)

]
, (2.6)

where z is restricted to the upper half-complex plane, and qM are constant zero-modes.

For simplicity, in this paper we take the reflection matrices R0 and Rπ to be commut-

ing. Then, with a suitable SO(10) transformation we can simultaneously diagonalize both

matrices and write

Rσ = diag
(
e2πiθ1

σ , e−2πiθ1
σ . . . , e2πiθ5

σ , e−2πiθ5
σ

)
, (2.7a)

R = diag
(
e2πiϑ1

, e−2πiϑ1
, . . . , e2πiϑ5

, e−2πiϑ5
)
, (2.7b)

with ϑI = θI
0 − θI

π. In this basis the resulting (complex) coordinates, denoted by ZI and

Z
I

with3 I = 1, . . . , 5, satisfy

∂ZI(e2πiz) = e2πiϑI
∂ZI(z) and ∂Z

I
(e2πiz) = e−2πiϑI

∂Z
I
(z) , (2.8)

and hence have an expansion in powers of zn+ϑI
and zn−ϑI

, respectively, with n ∈ Z. The

corresponding oscillators act on a twisted vacuum |~ϑ〉 created by the twist operator σ~ϑ
(z),

which is a conformal field of dimension hσ~ϑ
= 1

2

∑
I ϑ

I(1−ϑI) satisfying the following OPE

σ~ϑ
(z)σ−~ϑ

(w) ∼ (z − w)
P

I ϑI(1−ϑI ) . (2.9)

2Here, for convenience, we assume the space-time to have an Euclidean signature. Later, in section 3 we

revert to a Minkowskian signature when appropriate.
3In the subsequent sections we will take the space-time to be the product of a four-dimensional part

and an internal six-dimensional part. For notational convenience, we label the complex coordinates of the

four-dimensional part by I = 4, 5 and those of the internal six-dimensional part by I ≡ i = 1, 2, 3.
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For our purposes it is necessary to consider also the boundary conditions on the

fermionic fields ψM of the open superstring in the RNS formalism, which are

ψM (e2πiz) = η RM
N ψN (z) (2.10)

where η = 1 in the NS sector and η = −1 in the R sector. In the complex basis these

boundary conditions become

ΨI(e2πiz) = η e2πiϑI
ΨI(z) and Ψ

I
(e2πiz) = η e−2πiϑI

Ψ
I
(z) . (2.11)

Thus, in the NS sector ΨI and Ψ
I

admit an expansion in powers of zn+ϑI
and zn−ϑI

,

respectively, with n ∈ Z, so that their oscillators are of the type ψI
n+ϑI+ 1

2

. In the R

sector they have a mode expansion in powers of zn+ϑI
and zn−ϑI

, respectively, with n ∈
Z + 1

2 . Note that if ϑI 6= 0 neither the NS nor the R sector possesses zero-modes and

the corresponding fermionic vacuum is non-degenerate. On the other hand if ϑI = 0 there

are zero-modes in the R sector, while if ϑI = 1
2 there are zero-modes in the NS sector.

In these cases the corresponding fermionic vacuum is degenerate and carries the spinor

representation of the rotation group acting on the directions in which the ϑ’s vanish. For

this reason it is in general necessary to determine the boundary reflection matrices also in

the spinor representation, which we will denote by Rσ.

To find these matrices, we first note that in the vector representation Rσ simply de-

scribes the product of five rotations with angles 2πθI
σ in the five complex planes defined

by the complex coordinates ZI and Z
I
, as is clear from (2.7a). Then, recalling that the

infinitesimal generator of such rotations in the spinor representation is i
2ΓIĪ = i

4

[
ΓI ,ΓĪ

]

with ΓI being the SO(10) Γ-matrices in the complex basis (see appendix A.1 for our con-

ventions), we easily conclude that

Rσ = ±
5∏

I=1

eiπθI
σΓIĪ

= ±
5∏

I=1

(
1 + if I

σΓIĪ
)

√
1 + (f I

σ)2
(2.12)

where f I
σ = tanπθI

σ and the overall sign depends on whether we have a D-brane or an anti

D-brane. This general formula is particularly useful to derive the explicit expression for

Rσ in the limits f I
σ → 0 or f I

σ → ∞ corresponding, respectively, to Neumann or Dirichlet

boundary conditions in the I-plane. For example, for an open string starting from a Dp-

brane extending in the directions (01 . . . p) we have

R0 =

9−p
2∏

I=1

(
iΓIĪ

)
= Γ(p+1) · · ·Γ9 . (2.13)

Being particular instances of rotations, the reflection matrices in the vector and spinor

representations satisfy the following relation

R−1
σ ΓMRσ = (Rσ)MNΓN . (2.14)
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2.2 Open and closed string vertices

A generic brane intersection can describe different physical situations depending on the

values of the five twists ϑI .

When ϑI = 0 for all I’s, all fields are untwisted: this is the case of the open strings

starting and ending on the same stack of D-branes which account for dynamical gauge

excitations in the adjoint representation when the branes are space-filling, or for neutral

instanton moduli when the branes are instantonic.

When ϑ4 = ϑ5 = 0 but the ϑi’s with i = 1, 2, 3 are non vanishing, only the string

coordinates in the space-time directions are untwisted and describe open strings stretching

between different stacks of D-branes. The corresponding excitations organize in multiplets

that transform in the bi-fundamental representation of the gauge group and always contain

massless chiral fermions. When suitable relations among the non-vanishing twists are

satisfied (e.g. ϑ1 + ϑ2 + ϑ3 = 2) also massless scalars appear in the spectrum and they can

be combined with the fermions to form N = 1 chiral multiplets suitable to describe the

matter content of brane-world models.

Finally, when ϑ4 = ϑ5 = 1
2 , the string coordinates have mixed Neumann-Dirichlet

boundary conditions in the last four directions and correspond to open strings connecting

a space-filling D-brane with an instantonic brane. In this situation, if the ϑi’s (i = 1, 2, 3)

are vanishing, the instantonic brane describes an ordinary gauge instanton configuration

and the twisted open strings account for the charged instanton moduli of the ADHM

construction [17 – 20]; if instead also the ϑi’s are non vanishing the instantonic branes

represent exotic instantons of truly stringy nature whose role in the effective low-energy

field theory has been recently the subject of intense investigation [26 – 47]. From these

considerations it is clear that by considering open strings that are generically twisted we

can simultaneously treat all configurations that are relevant for the applications mentioned

in the introduction.

Open string vertices. Let us now focus on the R sector of the open strings at a generic

brane intersection. Here the vertex operator for the lowest fermionic excitation ΘA is

VΘ(z) = NΘ ΘA
[
σ~ϑ
s
~ǫA+~ϑ

e−
1
2
φ ei k·X](z) (2.15)

where we understand that the momentum k is defined only in untwisted directions. In this

expression the index A = 1, . . . , 16 labels a spinor representation of SO(10) with definite

chirality and runs over all possible choices of signs in the weight vector

~ǫA =
1

2

(
±,±,±,±,±

)
(2.16)

with, say, an odd number of +’s, and the symbol s~q(z) stands for the fermionic spin field

s~q(z) = ei
P

I qIϕI(z) (2.17)

where ϕI(z) are the fields that bosonize the world-sheet fermions according to ΨI = eiϕI

(up to cocycle factors). Finally, φ(z) is the boson entering the superghost fermionization
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formulas, σ~ϑ
(z) is the bosonic twist field introduced above and NΘ is a normalization factor

which will be discussed in the following sections.

The conformal weight of the vertex operator (2.15) is

h =
k2

2
+

1

2

∑

I

[
|ϑI |(1 − |ϑI |) + (ǫIA + ϑI)2

]
+

3

8
=
k2

2
+ 1 +

1

2

∑

I

(
|ϑI | + 2ϑIǫIA

)
(2.18)

and hence VΘ describes a physical massless fermion h = 1, k2 = 0, when the last term

vanishes. This condition restricts the number of the allowed polarization components of Θ

as follows

ΘA 6= 0 only if ǫIA =





±1
2 for ϑI = 0

−1
2 for ϑI > 0
1
2 for ϑI < 0

(2.19)

For example, when all ϑI ’s are vanishing we have a chiral spinor in ten dimensions but

if only ϑ4 = ϑ5 = 0 we have a chiral spinor in the four untwisted directions along the

(Z4, Z5) complex plane. On the other hand, in the instantonic brane constructions men-

tioned above, for which ϑ4 = ϑ5 = 1
2 , we see from the second line in (2.19) that the R

sector describes fermions that do not carry a spinor index under Lorentz rotations along

the ND four-dimensional plane, in perfect agreement with the ADHM realization of the

charged fermionic instanton moduli.

Closed string vertices. We now describe the closed string vertex operators correspond-

ing to background fluxes. In the closed string sector all fields (both bosonic and fermionic)

are untwisted due to the periodic boundary conditions.4 However, in the presence of D-

branes a suitable identification between the left and the right moving components of the

closed string has to be enforced at the boundary and a non-trivial dependence on the angles

θI
σ appears through the matrices Rσ or Rσ.

Let us first consider the R-R sector of the Type IIB theory, where the physical vertex

operators for the field strengths of the anti-symmetric tensor fields are, in the (−1
2 ,−1

2 )

superghost picture,

VF (z, z) = NF FAB e−iπα′kL·kR
[
s~ǫA e−

1
2
φ ei kL·X](z) ×

[
s̃~ǫB e−

1
2

eφ ei kR· eX](z) . (2.20)

In this expression NF is a normalization factor that will be discussed later, kL and kR

are the left and right momenta, and the tilde sign denotes the right-moving components.

Furthermore, the factor e−iπα′kL·kR is a cocycle that allows for an off-shell extension of the

closed string vertex with kL 6= kR, as discussed in ref. [58]. The bi-spinor polarization FAB
comprises all R-R field strengths of the Type IIB theory according to

FAB =
∑

n=1,3,5

1

n!
FM1...Mn

(
ΓM1...Mn

)
AB , (2.21)

4Even if in later sections we will consider an orbifold compactification, we will include background fluxes

from the untwisted closed string sector only. The study of the effect of background fluxes from twisted

sectors of the orbifold theory is left to future work.
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even if in our applications only the 3-form part will play a role. In the presence of D-branes

the left and right moving components of the vertex operator VF must be identified using

the reflection rules discussed above. In practice (see for example ref. [58] for more details)

this amounts to set

X̃M (z) = (R0)
M
N XN (z) , s̃~ǫA(z) = (R0)

A
B s~ǫB(z) , φ̃(z) = φ(z) (2.22)

and modify the cocycle factor in the vertex operator (2.20) to e−iπα′kL·(kRR0). As a con-

sequence of the identifications (2.22), the R-R field-strength FAB gets replaced by the

bi-spinor polarization (F R0)AB that incorporates also the information on the type of

boundary conditions enforced by the D-branes.

Let us now turn to the NS-NS sector of the closed string. Here it is possible to write an

effective BRST invariant vertex operator for the derivatives of the anti-symmetric tensor

B that are related to the 3-form flux H. In the (0,−1) superghost picture,5 this effective

vertex is

VH(z, z) = NH

(
∂MBNP

)
e−iπα′kL·kR

[
ψMψNei kL·X](z) ×

[
ψ̃P e−

eφ ei kR· eX](z) (2.23)

where again we have introduced a normalization factor and a cocycle. When we insert

this vertex in a disk diagram, we must identify the left and right moving sectors using the

reflection rules (2.22) supplemented by

ψ̃M (z) = (R0)
M
Nψ

N (z) . (2.24)

Consequently, in (2.23) the polarization (∂B) is effectively replaced by (∂BR0). Notice

that the NS-NS polarization combines with the boundary reflection matrix in the vector

representation R0, in contrast to the R-R case where one finds instead the reflection matrix

in the spinor representation R0.

2.3 The string correlator with R-R and NS-NS fluxes

We now evaluate the string correlation functions among two massless open string fermions

and the background closed string flux, as represented in figure 1. It is a mixed open/closed

string amplitude on a disk which, generically, has mixed boundary conditions. From the

conformal field theory point of view such fermionic correlation functions are similar to the

mixed amplitudes considered in refs. [55 – 58]. Let us analyze first the interaction with the

R-R flux.

R-R flux. We take two fermionic open string vertices (2.15) and one closed string R-R

vertex (2.20), and compute the amplitude

AF =
〈
VΘ(x)VF (z, z)VΘ′(y)

〉
= cF ΘA1(FR0)A2A3 Θ′

A4 × AA1A2A3A4 (2.25)

where the prefactor

cF = C(p+1) NΘ NΘ′ NF , (2.26)

5This particular asymmetric picture is chosen in view of the calculations of the disk amplitudes described

in section 2.3.
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accounts for the normalizations of the vertex operators and the topological normalization

C(p+1) of any disk amplitude with the boundary conditions of a Dp-brane [20, 59], whose ex-

plicit expression will be given in section 3.4 for D3-branes and D-instantons, see eqs. (3.45)

and (3.50). The last factor in (2.25) is the 4-point correlator

AA1A2A3A4 =

∫ ∏4
i=1 dzi
dVCKG

e−iπα′k2·k3

〈 4∏

i=1

[
σ~ϑi

s~ǫi+~ϑi
e−

1
2
φ ei ki·X](zi)

〉
(2.27)

where we have used the convenient notation

z1 = x , z2 = z , z3 = z , z4 = y ,

k1 = k , k2 = kL , k3 = kRR0 , k4 = k′ ,

~ϑ1 = ~ϑ , ~ϑ2 = 0 , ~ϑ3 = 0 , ~ϑ4 = −~ϑ ,
(2.28)

and we have set ~ǫi ≡ ~ǫAi . Since the closed string vertex is untwisted, the two open

string vertices must have opposite twists in order to have a non-vanishing amplitude. This

explains the third line above, which, according to eq. (2.19), implies that when ϑI 6= 0 the

polarizations ΘA1 and Θ′
A4

are not vanishing only if ǫI1 = −ǫI4. Therefore, if ϑI 6= 0 for

all I’s, the spinor weights ~ǫ1 and ~ǫ4 have different GSO parity and the amplitude (2.25)

ceases to exist. To avoid this, from now on we will assume that at least one of the ϑI ’s be

vanishing.6 The evaluation of the correlator in (2.27) can be simplified by assuming that the

closed string vertex does not carry momentum in the twisted directions (i.e. kI
2 = kI

3 = 0

if ϑI 6= 0). This is not a restrictive choice for our purposes, since we will be interested in

the effects induced by constant background fluxes.

In the correlator (2.27) the open string positions z1 and z4 are integrated on the real

axis while the closed string variables z2 and z3 are integrated in the upper half complex

plane, modulo the Sl(2; R) projective invariance that is fixed by the conformal Killing group

volume dVCKG. Using this fact we have

∏4
i=1 dzi
dVCKG

= dω (1 − ω)−2
(
z14z23

)2
(2.29)

where ω is the anharmonic ratio

ω =
z12z34
z13z24

( |ω| = 1 ) (2.30)

with zij = zi−zj . Due to our kinematical configuration, the contribution of the twist fields

and the bosonic exponentials to the correlator (2.27) can be factorized and becomes

〈
σ~ϑ

(z1)σ−~ϑ
(z4)

〉〈 4∏

i=1

ei ki·X(zi)
〉

= z
P

I ϑI(1−ϑI )
14 ωα′t (1 − ω)α

′s (2.31)

6As pointed out in ref. [24] when all five ϑI ’s are non vanishing, the simplest tree-level diagram involving

massless fermions of the twisted R sector requires at least three different types of boundary conditions and

thus it is not of the type of amplitudes we are discussing here, which involve only two boundary changing

operators.

– 10 –



J
H
E
P
1
0
(
2
0
0
8
)
1
1
2

where we have used (2.9), introduced the two kinematic invariants

s = (k1 + k4)
2 = (k2 + k3)

2 and t = (k1 + k3)
2 = (k2 + k4)

2 , (2.32)

and understood the momentum conservation.

Also the contribution of the spin fields and the superghosts can be easily evaluated

using the bosonization formulas, that allow to write

〈 4∏

i=1

s
~ǫi+~ϑi

(zi) e−
1
2
φ(zi)

〉
=
〈 4∏

i=1

s~ǫi
(zi) e−

1
2
φ(zi)

〉
×
∏

i<j

z
~ǫi·~ϑj+~ǫj ·~ϑi+~ϑi·~ϑj

ij . (2.33)

The first factor in the right hand side is the four fermion correlator of the Type IIB

superstring in ten dimensions which has been computed for example in ref. [60], namely

〈 4∏

i=1

s~ǫi
(zi) e−

1
2
φ(zi)

〉
=

1

2

∏

i<j

z−1
ij

[
z13z24

(
ΓM

)A1A4
(
ΓM
)A2A3 +z14z23

(
ΓM

)A1A3
(
ΓM
)A2A4

]

(2.34)

where we have understood the “charge” conservation
∑

i~ǫi = 0. Furthermore, the ϑ-

dependent factor in (2.33) can be simplified using the relations

~ǫ2 · ~ϑ = −~ǫ3 · ~ϑ , ~ǫ1 · ~ϑ = −~ǫ4 · ~ϑ =
1

2

∑

I

ϑI , (2.35)

that follow from (2.19) and the “charge” conservation of the spinor weights. Indeed, us-

ing (2.35) we have ∏

i<j

z
~ǫi·~ϑj+~ǫj·~ϑi+~ϑi·~ϑj

ij = z
P

I ϑI(ϑI−1)
14 ω−~ǫ3·~ϑ . (2.36)

Collecting everything we find that the amplitude (2.27) can be written as

AA1A2A3A4 =
(
ΓM

)A1A4
(
ΓMI1

)A2A3 +
(
ΓMI2

)A1A3
(
ΓM
)A2A4 (2.37)

where we have introduced the two ~ϑ-dependent diagonal matrices with entries

(
I1
) A3

A3
=

1

2
e−

iπα′s
2

∫

γ
dω (1 − ω)α

′s−1 ωα′t−~ϑ·~ǫ3−1 ,

(
I2
) A3

A3
=

1

2
e−

iπα′s
2

∫

γ
dω (1 − ω)α

′s ωα′t−~ϑ·~ǫ3−1 ,

(2.38)

where A3 is the spinor index corresponding to the spinor weight ~ǫ3. Here the integrals run

around the clockwise oriented unit circle γ : |ω| = 1, and can be evaluated to be [58]

(
I1
) A3

A3
=

1

2
e−

iπα′s
2

(
e−2πi

(
α′t−~ϑ·~ǫ3

)
− 1
)
B
(
α′s;α′t− ~ϑ · ~ǫ3

)
,

(
I2
) A3

A3
=

1

2
e−

iπα′s
2

(
e−2πi

(
α′t−~ϑ·~ǫ3

)
− 1
)
B
(
α′s+ 1;α′t− ~ϑ · ~ǫ3

)
,

(2.39)

where B(a; b) is the Euler β-function. Plugging (2.37) into (2.25), with some simple ma-

nipulations we find

AF = −cF
[
Θ′ΓMΘ tr

(
FR0I1ΓM

)
+ Θ′ΓMFR0I2ΓMΘ

]
(2.40)
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where the trace is understood in the 16×16 block spanned by the spinor indices Ai’s. This

expression can be further simplified by expanding the matrices FR0I1 and FR0I2 as

(
FR0Ia

)
AB =

∑

n=1,3,5

1

n!

(
FR0Ia

)
N1...Nn

(
ΓN1...Nn

)
AB (a = 1, 2) , (2.41)

and by using the Γ-matrix identities

tr
(
ΓMΓN

)
=16 δMN , tr

(
ΓMΓN1N2N3

)
= tr

(
ΓMΓN1...N5

)
= 0 ,

ΓMΓN1...NnΓM =(−1)n(10 − 2n) ΓN1...Nn .
(2.42)

After some straightforward algebra we find

AF = −8cF Θ′ΓMΘ
[
FR0(2I1 − I2)

]
M

+
4cF
3!

Θ′ΓMNP Θ
[
FR0I2

]
MNP

. (2.43)

This formula is one of the main results of this section. It describes the tree-level bilinear

fermionic couplings induced by R-R fluxes on a general brane intersection.

NS-NS flux. Let us now turn to the fermionic couplings induced by the NS-NS 3-form

flux effectively described by the vertex operator (2.23). Such couplings arise from the

following mixed disk amplitude

AH =
〈
VΘ(x)VH(z, z)VΘ′(y)

〉
= cH ΘA(∂BR0)MNP Θ′

B × AAB;MNP (2.44)

where the normalization factor is

cH = C(p+1) NΘ NΘ′ NH (2.45)

and the 4-point correlator is

AAB;MNP =

∫ ∏4
i=1 dzi
dVCKG

e−iπα′k2·k3

〈
σ~ϑ

(z1)σ−~ϑ
(z4)

〉〈 4∏

i=1

ei ki·X(zi)
〉

(2.46)

×
〈
s
~ǫA+~ϑ

(z1)ψ
MψN (z2)ψ

P (z3) s~ǫB−~ϑ
(z4)

〉〈
e−

1
2
φ(z1)e−φ(z3)e−

1
2
φ(z4)

〉
.

Here we have used a notation similar to that of eq. (2.28) for the bosonic and twist fields,

whose contribution is the same as in eq. (2.31) because of our kinematical configuration.

Due to the Lorentz structure of the fermionic correlator, the second line of (2.46) can be

written as
〈
s
~ǫA+~ϑ

(z1)ψ
MψN (z2)ψ

P (z3) s~ǫB−~ϑ
(z4)

〉〈
e−

1
2
φ(z1)e−φ(z3)e−

1
2
φ(z4)

〉

= f(zij)
(
ΓMNP

)AB
+ g(zij)

[
δMP

(
ΓN
)AB − δNP

(
ΓM
)AB
] (2.47)

where the two functions f and g can be determined, for example, by using the bosonization

technique. If we pick a configuration such that the field ψMψN (z2) can be bosonized as

ei~ǫ2·~ϕ with weight vectors of the form

~ǫ2 =
(
0, . . . ,±1, . . . ,±1, . . . , 0) , (2.48)
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corresponding to roots of SO(10), we can use the same strategy we have described before

in the R-R case to find

f(zij) =
∏

i<j

z−1
ij ×

(
z14z23

)
× z

P
I ϑI (ϑI−1)

14 ω−~ǫ3·~ϑ ,

g(zij) =
∏

i<j

z−1
ij ×

(
z12z34 + z13z24

)
× z

P
I ϑI (ϑI−1)

14 ω−~ǫ3·~ϑ ,
(2.49)

where the last factors are the same as in eq. (2.35) and ~ǫ3 is the weight vector in the vector

representation associated to ψP (z3), of the form

~ǫ3 =
(
0, . . . ,±1, . . . , 0) . (2.50)

Collecting everything, and introducing the diagonal matrices (with vector indices) (I1)
P
P

and (I2)
P
P defined analogously to eq. (2.38), after some simple manipulations we obtain

AH = −4cHΘ′ΓNΘ δMP
[
∂BR0(2I1 − I2)

]
[MN ]P

+ 2cHΘ′ΓMNP Θ
[
∂BR0I2

]
MNP

(2.51)

which is the NS-NS counterpart of the R-R amplitude (2.43) on a generic D brane inter-

section and shares with it the same type of fermionic structures.

3. Flux couplings with untwisted open strings (~ϑ = 0)

We now exploit the results obtained in the previous section to analyze how constant back-

ground fluxes couple to untwisted open strings, i.e. strings starting and ending on a single

stack of D-branes. This corresponds to set ~ϑ = 0 in all previous formulas which drastically

simplify. Note that the condition ~ϑ = 0 implies that ~θ0 = ~θπ, so that the reflection rules are

the same at the two string end-points. We can distinguish two cases, namely when these

reflection rules are just signs (i.e. θI
σ = 0 or 1) and when they instead depend on generic

angles θI
σ. In the first case the branes are unmagnetized, while the second corresponds to

magnetized branes.

Since we are interested in constant background fluxes, we can set the momentum of

the closed string vertices to zero; this corresponds to take the limit s = −2t → 0 in the

integrals (2.39) which yields

2I1 = I2 = −iπ . (3.1)

Using this result in the R-R and NS-NS amplitudes (2.43) and (2.51), we see that the

fermionic couplings with a single Γ matrix vanish and only the terms with three Γ’s survive,

so that the total flux amplitude is

A ≡ AF + AH = −2πi ΘΓMNP Θ
[cF

3

(
FR0

)
MNP

+ cH
(
∂BR0

)
MNP

]
. (3.2)

Here we used the fact that the untwisted fermions Θ and Θ′ in (2.43) and (2.51) actually

describe the same field and only differ because they carry opposite momentum. For this

reason we multiplied the above amplitudes by a symmetry factor of 1/2 and dropped the
′ without introducing ambiguities.
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It is clear from eq. (3.2) that once the flux configuration is given, the structure of the

fermionic couplings for different types of D-branes depends crucially on the boundary re-

flection matrices R0 and R0. Notice that the R-R piece of the amplitude (3.2) is generically

non zero for 1-form, 3-form and 5-form fluxes. However, from now on we will restrict our

analysis only to the 3-form and hence the bi-spinor to be used is simply

FAB =
1

3!
FMNP

(
ΓMNP

)
AB . (3.3)

We can now specify better the normalization factors cF and cH . In fact the vertex (2.20)

for a R-R 3-form and the NS-NS vertex (2.23) should account for the following quadratic

terms of the bulk theory in the ten-dimensional Einstein frame:

1

2κ2
10

∫
d10x

√
g(E)

(
1

3!
eϕF 2 +

1

3!
e−ϕdB2

)
, (3.4)

where ϕ is the dilaton and κ10 is the gravitational Newton constant in ten dimensions. In

order to reproduce the above dilaton dependence, the normalization factors NF and NH

of the R-R and NS-NS vertex operators must scale with the string coupling gs = eϕ as

NF ∼ g1/2
s and NH ∼ g−1/2

s , (3.5)

so that from eqs. (2.26) and (2.45) we obtain

cH = cF /gs . (3.6)

Taking all this into account, we can rewrite the total amplitude (3.2) as

A ≡ AF + AH = −2πi

3!
cF ΘΓMNP ΘTMNP (3.7)

where

TMNP =
(
FR0

)
MNP

+
3

gs

(
∂BR0

)
[MNP ]

. (3.8)

Up to now we have used a ten-dimensional notation. However, since we are interested in

studying the flux induced couplings for gauge theories and instantons in four dimensions,

it becomes necessary to split the indices M,N, . . . = 0, 1, . . . , 9 appearing in the above

equations into four-dimensional space-time indices µ, ν, . . . = 0, 1, 2, 3, and six-dimensional

indicesm,n, . . . = 4, 5, . . . , 9 labeling the directions of the internal space (which we will later

take to be compact, for example a 6-torus T6 or an orbifold thereof). Clearly background

fluxes carrying indices along the space-time break the four-dimensional Lorentz invariance

and generically give rise to deformed gauge theories. Effects of this kind have already been

studied using world-sheet techniques in refs. [55, 57] where a non vanishing R-R 5-form

background of the type Fµνmnp was shown to originate the N = 1/2 gauge theory, and

in ref. [21] where the so-called Ω deformation of the N = 2 gauge theory was shown to

derive from a R-R 3-form flux of the type Fµνm. In the following, however, we will consider

only internal fluxes, like Fmnp or (∂B)mnp, which preserve the four-dimensional Lorentz

invariance, and the fermionic amplitudes we will compute are of the form

A = −2πi

3!
cF ΘΓmnpΘTmnp (3.9)

– 14 –



J
H
E
P
1
0
(
2
0
0
8
)
1
1
2

We now analyze the structure of these couplings beginning with the simplest case of space-

filling unmagnetized D-branes; later we examine unmagnetized Euclidean branes and finally

branes with a non-trivial world-volume magnetic field.

3.1 Unmagnetized D-branes

Even if the fermionic couplings (3.7) have been derived in section 2 assuming a Euclidean

signature, when we discuss space-filling D-branes with ~ϑ = 0, the rotation to a Minkowskian

signature poses no problems. In this case, Θ becomes a Majorana-Weyl spinor in ten

dimensions which in particular satisfies

ΘΓmnpΘ = −
(
ΘΓmnpΘ

)∗
. (3.10)

Furthermore for an unmagnetized Dp-brane that fills the four-dimensional Minkowski space

and possibly extends also in some internal directions, the reflection matrices R0 and R0

are very simple: indeed in the vector representation

R0 = diag(±1,±1, . . .) , (3.11)

where the entries specify whether a direction is longitudinal (+) or transverse (−), while

in the spinor representation

R0 = Γp+1 · · ·Γ9 . (3.12)

Using these matrices we easily see that Tmnp is a real tensor, so that in view of eq. (3.10)

also the total fermionic amplitude (3.9) is real, as it should be.

The explicit expression of Tmnp is particularly simple in the case of brane configurations

which respect the 4 + 6 structure of the space-time, i.e. D3- and D9- branes. For space-

filling D3-branes all internal indices are transverse, so that R0|int = −1 and R0 = Γ4 · · ·Γ9.

From eq. (3.8) it follows then

Tmnp = (∗6F )mnp −
1

gs
Hmnp (3.13)

where ∗6 denotes the Poincarè dual in the six-dimensional internal space and H = dB.7

For D9-branes, instead, all internal indices are longitudinal, and to emphasize this fact

we denote them as m̂, n̂, . . . In this case we simply have R0 = 1 and R0 = 1 so that

Tm̂n̂p̂ = Fm̂n̂p̂ +
1

gs
Hm̂n̂p̂ . (3.14)

Note however that D9-branes must always be accompanied by orientifold 9-planes (O9) for

tadpole cancellation and that the corresponding orientifold projection kills the NS-NS flux

Hm̂n̂p̂. If we take this fact into account, the coupling tensor for D9-branes reduces to

Tm̂n̂p̂ = Fm̂n̂p̂ . (3.15)

7In our conventions (∗6F )mnp = 1
3!

ǫmnprst F rst and Hmnp = 3∂[mBnp] =
`

∂mBnp + ∂nBpm + ∂pBmn

´

.

– 15 –



J
H
E
P
1
0
(
2
0
0
8
)
1
1
2

0 1 2 3 4 5 6 7 8 9 Tmnp

D3 − − − − × × × × × × (∗6F )mnp − 1
gs
Hmnp

D5 − − − − − − × × × × 1
gs
Hm̂n̂p ; − 1

2 F
qr

m̂ ǫqrnp ; − 1
gs
Hmnp

D7 − − − − − − − − × × F q
m̂n̂ ǫqp + 1

gs
Hm̂n̂p

D9 − − − − − − − − − − Fm̂n̂p̂

Table 1: Structure of the fermionic couplings T induced by background fluxes on D3, D5, D7 and

D9-branes after taking into account the appropriate orientifold projections; longitudinal internal

directions are labeled by m̂, n̂, . . . and internal transverse ones by m,n, . . .

The case of space-filling D7- and D5-branes is slightly more involved since for these

branes the internal directions are partially longitudinal and partially transverse. In par-

ticular, for D7-branes the longitudinal internal indices m̂, n̂ . . . take four values while the

transverse indices p, q, . . . take two values. eq. (3.8) implies then that the only non vanishing

components of the T tensor for D7-branes are

Tm̂n̂p̂ =
1

gs
Hm̂n̂p̂ , Tm̂n̂p = F q

m̂n̂ ǫqp +
1

gs
Hm̂n̂p and Tm̂np = − 1

gs
Hm̂np . (3.16)

If one introduces O7-planes to cancel the tadpoles produced by the D7-branes, one can see

that the corresponding orientifold projection8 ΩI2(−1)FL removes all F and H components

with an even number of transverse indices so that the only surviving couplings are

Tm̂n̂p = F q
m̂n̂ ǫqp +

1

gs
Hm̂n̂p . (3.17)

For D5-branes the situation is somehow complementary, since the longitudinal internal

indices take two values while the transverse ones run over four values. In this case one can

show that the non vanishing components of the T tensor are

Tm̂n̂p =
1

gs
Hm̂n̂p , Tm̂np = −1

2
F qr

m̂ ǫqrnp −
1

gs
Hm̂np and Tmnp = − 1

gs
Hmnp . (3.18)

Again the O5-planes required for tadpole cancellation enforce an orientifold projection ΩI4
which removes the components of H(F ) with an even(odd) number of transverse indices.

Thus, the coupling Tm̂np reduces to

Tm̂np = −1

2
F qr

m̂ ǫqrnp . (3.19)

The fermionic couplings for the various D-branes we have discussed, taking into account

the appropriate orientifold projections, are summarized in table 1.

8The extra (−1)FL appearing in the case of O3/O7-planes ensure that the corresponding orientifold

actions square to one, i.e. (ΩI4n+2(−1)FL)2 = I2
4n+2(−1)FL+FR = 1.
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These results clearly exhibit the fact that the R-R and NS-NS 3-form fluxes do not

appear on equal footing in the effective couplings T . This is due to the different R0 and

R0 reflection matrices entering in the definition of the R-R and NS-NS vertex operators as

discussed in section 2. It is interesting to observe in table 1 that, while for D9- and D5-

branes the fermionic couplings depend either on F or on H, for D3- and D7-branes they

depend on a combination of the R-R and NS-NS fluxes. This follows from the fact that

O3- and O7-planes act on the same way on R-R and NS-NS 3-forms. By introducing the

complex 3-form9

G = F − i

gs
H , (3.20)

it is possible to rewrite the D3 brane coupling (3.13) as

Tmnp = (∗6F )mnp −
1

gs
Hmnp = Re

(
∗6G− iG

)
mnp

. (3.21)

Thus our explicit conformal field theory calculation confirms that an imaginary self-dual

(ISD) 3-form flux G does not couple to unmagnetized D3-branes, a well-known result that

has been previously obtained using purely supergravity methods [10, 12, 48, 50, 52].

Also the fermionic couplings (3.17) for the D7 branes can be written in terms of the

3-form flux G. Indeed, introducing a complex notation and denoting as i and i the complex

directions of the plane transverse to the D7-branes (sometimes in the literature also called

D7i-branes), we have

Tm̂n̂i = iGm̂n̂i and Tm̂n̂i = −iG∗
m̂n̂i

, (3.22)

in agreement with the structure of soft fermionic mass terms found in ref. [12].

3.2 Unmagnetized Euclidean branes

Euclidean branes that are transverse to the four-dimensional space-time and extend par-

tially or totally in the internal directions are relevant to discuss non-perturbative instanton

effects in the framework of branes models. In this case, to treat consistently the flux in-

duced couplings it is necessary to work in a space with Euclidean signature as we have

done in section 2. Then, the massless fermions Θ cannot satisfy a Majorana condition, and

relations like (3.10) do not hold any more. On the other hand, in Euclidean space there is

no issue about the reality of a fermionic amplitude and, as we will see, also the coupling

tensor T is in general complex.

Let us begin by considering the D-instantons (or D(−1)-branes) for which all ten

directions are transverse. In this case we have

R0 = −1 and R0 = Γ0Γ1 · · ·Γ9 ≡ i ΓE
(11) (3.23)

9Self-duality of type IIB can be used to promote this expression to its SL(2, Z)-covariant version G =

F − τH with τ = C0 − ie−ϕ. A direct evaluation of the C0-dependent term however requires a string

amplitude involving two closed and two open string insertions in the disk.
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where ΓE
(11) is the chirality matrix in ten Euclidean dimensions. Thus, recalling our chirality

choice for the spinors Θ, we easily see that for D-instantons the T tensor (3.8) is simply

Tmnp = −iFmnp −
1

gs
Hmnp = −iGmnp . (3.24)

Let us now turn to Euclidean instantonic 5-branes (or E5-branes) extending in the six

internal directions. In this case the reflection matrix in the vector representation entering

in the fermionic coupling T is R0|int = 1 along the internal directions while the matrix in

the spinor representation is

R0 = Γ0Γ1Γ2Γ3 = −i Γ4 · · ·Γ9ΓE
(11) . (3.25)

Therefore, for unmagnetized E5-branes we obtain from eq. (3.8)

Tm̂n̂p̂ = i (∗6F )m̂n̂p̂ +
1

gs
Hm̂n̂p̂ (3.26)

where we have used the same index notation introduced in the previous subsection. The

above coupling simply reduces to

Tm̂n̂p̂ = i (∗6F )m̂n̂p̂ (3.27)

in an orientifold model with O9-planes.

In the literature some attention has been devoted also to Euclidean 3-branes (or E3-

branes) extending along four of the six internal directions [51, 53]. These branes have

some similarity with the D7-branes considered in the previous subsection, and thus our

discussion can follow the same path. Using again the convention of splitting the internal

indices into longitudinal (hatted) and transverse (unhatted) ones, we can show that the

flux-induced fermionic couplings on E3-branes are

Tm̂n̂p̂ =
1

gs
Hm̂n̂p̂ , Tm̂n̂p = − i

2
ǫm̂n̂r̂ŝ F

r̂ŝ
p +

1

gs
Hm̂n̂p and Tm̂np = − 1

gs
Hm̂np . (3.28)

If we consider the appropriate orientifold projections, which in this case remove both Hm̂n̂p̂

and Hm̂np, we see that the only non-vanishing coupling is

Tm̂n̂p = − i

2
ǫm̂n̂r̂ŝ F

r̂ŝ
p +

1

gs
Hm̂n̂p . (3.29)

This is in perfect agreement with the result of refs. [51, 53] that has been derived with pure

supergravity methods. To make the comparison easier, we observe that the E3-fermionic

terms can be rewritten as

ΘΓm̂n̂pΘTm̂n̂p = ΘΓm̂n̂p G̃m̂n̂p Θ (3.30)

where

G̃ =
1

gs
H + iF γ(5) (3.31)
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0 1 2 3 4 5 6 7 8 9 Tmnp

D(−1) × × × × × × × × × × −iFmnp − 1
gs
Hmnp

E1 × × × × − − × × × × 1
gs
Hm̂n̂p ; − i ǫm̂q̂ F

q̂
np ; − 1

gs
Hmnp

E3 × × × × − − − − × × − i
2 ǫm̂n̂r̂ŝ F

r̂ŝ
p + 1

gs
Hm̂n̂p

E5 × × × × − − − − − − i (∗6F )m̂n̂p̂

Table 2: Structure of the fermionic couplings T induced by background fluxes on D(−1), E1, E3

and E5 instantonic branes after taking into account the appropriate orientifold projections; the

longitudinal internal directions are labeled by m̂, n̂, . . ., the internal transverse ones by m,n, . . . .

is the flux combination that is usually introduced in this case, with γ(5) being the chirality

matrix for the four-dimensional brane world-volume. We further remark that our general

formula (3.7) accounts for all flux-induced fermionic terms of the E3-brane effective action

discussed in refs. [51, 53] including those which break the Lorentz invariance in the first

four directions.

For completeness we also mention that the fermionic couplings for the Euclidean 1-

branes (or E1-branes) are given by

Tm̂n̂p =
1

gs
Hm̂n̂p , Tm̂np = −i ǫm̂q̂ F

q̂
np −

1

gs
Hm̂np and Tmnp = − 1

gs
Hmnp ; (3.32)

note that Hm̂np is removed by the orientifold projection when the E1-branes are consid-

ered together with D5/D9-branes and the corresponding orientifold planes. The structure

of the various fermionic couplings for the instantonic branes discussed above is summarized

in table 2.

We conclude our analysis by observing that in presence of E-branes, the spacetime fill-

ing Dp-branes live in the Euclidean ten-dimensional space. Still, the couplings of such Dp-

branes are again given by the same linear combinations of F and H like in the Minkowskian

case considered in last section, since R0 and R0 are trivial along the would be time direction.

3.3 Magnetized branes

The results of the previous subsections can be generalized in a rather straightforward way

to branes with a non-trivial magnetization on their world-volume for which the longitudinal

coordinates satisfy non-diagonal boundary conditions. Indeed we can start from the same

brane configurations we have analyzed before, introduce a world-volume gauge field A that

couples to the open string end-points and obtain a magnetization F0 = Fπ = 2πα′(dA). In

this way we can use the same R-R and NS-NS background fluxes of the previous subsections

and simply study the new couplings induced by the world-volume magnetization through

the reflection matrices R0 and R0 given in eqs. (2.3) and (2.12).

As an example we briefly discuss the case of the magnetized E5 branes which play

an important role in the instanton calculus of the gauge theory engineered with wrapped
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D9-branes and O9-planes [23, 24]. Adopting the same index notation as before, one can

easily realize that the spinor reflection matrix (2.12) for a magnetized E5 brane can be

written in the real basis as

R0 = Γ0 · · ·Γ3 U0 = −i Γ4 · · ·Γ9ΓE
(11) U0 (3.33)

where

U0 =
1√

det(1 −F0)
; e

1
2
(F0)m̂n̂Γm̂n̂

; (3.34)

in which the symbol ; · · · ; means antisymmetrization on the vector indices of the Γ’s, so

that only a finite number of terms appear in the expansion of the exponential. In our case

we explicitly have

; e
1
2
(F0)m̂n̂Γm̂n̂

; = 1 +
1

2
(F0)m̂n̂Γm̂n̂ +

i

16
(F0)

m̂n̂(F0)
p̂q̂ǫm̂n̂p̂q̂r̂ŝ Γr̂ŝΓ(7)

− i

3! · 8(F0)
m̂n̂(F0)

p̂q̂(F0)
r̂ŝǫm̂n̂p̂q̂r̂ŝ Γ(7)

(3.35)

where Γ(7) = iΓ4 . . .Γ9 is the chirality matrix of the E5-brane world volume. Using this

expression in eq. (3.8) and focusing for simplicity only on R-R fluxes since the NS-NS fluxes

are anyhow removed by the orientifold projection, after simple manipulations we find that

the fermionic couplings of a magnetized E5-brane are described by the tensor

Tm̂n̂p̂ =
1√

det(1−F0)

[
i (∗6F )m̂n̂p̂ + 3i (∗6F ) q̂

m̂n̂ (F0)q̂p̂

+
3i

8
F q̂

m̂n̂ (F0)
r̂ŝ(F0)

t̂ûǫq̂r̂ŝt̂ûp̂−
i

3! 8
Fm̂n̂p̂(F0)

q̂r̂(F0)
ŝt̂(F0)

ûv̂ ǫq̂r̂ŝt̂ûv̂

]
.

(3.36)

In the same way, and always starting from the general formula (3.8) one can discuss all

other types of magnetized branes.

3.4 Flux-induced fermionic mass and lifting of instanton zero-modes

To complete the previous analysis we write the fermion bilinear ΘΓmnpΘ using a four-

dimensional spinor notation; in this way the structure of the flux-induced fermionic masses

will be more clearly exposed. According to our 4+6 splitting, the anti-chiral ten dimensional

spinor ΘA decomposes as

ΘA →
(
ΘαA,Θα̇A

)
(3.37)

where α (α̇) are chiral (anti-chiral) indices in four dimensions, and the lower (upper) indices

A are chiral (anti-chiral) spinor indices of the internal six dimensional space. Furthermore,

by decomposing the Γ matrices according to

Γµ = γµ ⊗ 1 , Γm = γ(5) ⊗ γm , (3.38)

one can show that

ΘΓmnpΘ = −i ΘαAΘ B
α

(
Σ

mnp)
AB

− i Θα̇AΘα̇
B

(
Σmnp

)AB
(3.39)
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T ISD → T(0,3) ⊕ T(1,2)NP
⊕ T(2,1)P = 1̄⊕ 3̄⊕ 6̄

T IASD → T(3,0) ⊕ T(2,1)NP
⊕ T(1,2)P = 1⊕ 3⊕ 6

Table 3: Decomposition of the ISD and IASD parts of the 3-form T . The (2, 1) and (1, 2) compo-

nents are distinguished into primitive (P) and non-primitive (NP) parts. The last column displays

the SU(3) content of the various pieces.

where Σmnp and Σ
mnp

are respectively the chiral and anti-chiral blocks of γmnp (see ap-

pendix A.1 for details). It is important to notice that

∗6Σ
mnp = −i Σmnp , ∗6Σ

mnp
= +iΣ

mnp
(3.40)

so that Σmnp only couples to an imaginary self-dual (ISD) tensor, while Σ
mnp

only couples

to an imaginary anti-self dual (IASD) tensor. More explicitly, we have

ΘΓmnpΘTmnp = −i ΘαAΘ B
α

(
Σ

mnp)
AB

T IASD
mnp − i Θα̇AΘα̇

B

(
Σmnp

)AB
T ISD

mnp

= −i ΘαAΘ B
α TAB − i Θα̇AΘα̇

BT
AB

(3.41)

where

T ISD
mnp =

1

2

(
T − i ∗6T

)
mnp

, T IASD
mnp =

1

2

(
T + i ∗6T

)
mnp

. (3.42)

In the second line of eq. (3.41) we have adopted a SU(4) ∼ SO(6) notation and defined the

IASD and ISD parts of the T -tensor as the following 4 × 4 symmetric matrices

TAB = (Σ
mnp)

AB
T IASD

mnp , TAB =
(
Σmnp

)AB
T ISD

mnp , (3.43)

with upper (lower) indices A,B running over the 4 (4̄) representations of SU(4). Fix-

ing a complex structure, the 3-form tensors T ISD, T IASD can be decomposed into their

(3,0),(2,1),(1,2) and (0,3) parts as indicated in table 3. The (2, 1) components are distin-

guished into six primitive ones (P), satisfying gjk̄Tijk̄ = 0, and three non-primitive ones

(NP), satisfying Ti = gjk̄Tijk̄. A similar decomposition holds for the (1, 2) part. The var-

ious components transform in irreducible representations of the SU(3) ∈ SU(4) holonomy

group under which the internal coordinates Zi, Z̄i transform as 3 and 3̄ respectively and

spinors like 4 = 1 + 3 and 4̄ = 1̄ + 3̄. The SU(3) content of the T -tensor is displayed in

the last column in table 3.

Let us now use this information to rewrite the fermionic terms we have discussed in the

previous subsections, focusing in particular on D3-branes and D-instantons on flat space.

In the case of D3-branes, we can use a Minkowski signature and the Majorana-Weyl fermion

Θ decomposes as in (3.39) where the four-dimensional chiral and anti-chiral components

are related by charge conjugation and assembled into four Majorana spinors. These are

the four gauginos leaving on the world-volume of the D3-brane, and for future notational

convenience we will denote their chiral and anti-chiral parts as ΛαA and Λ̄α̇A (instead of

ΘαA and Θα̇A). Then, using eqs. (3.21) and (3.39) in the general expression (3.9), we obtain

AD3 =
2πi

3!
cF Tr

[
ΛαAΛ B

α

(
Σ

mnp)
AB

GIASD
mnp − Λ̄α̇AΛ̄α̇

B

(
Σmnp

)AB (
GIASD

mnp

)∗ ]
(3.44)
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where we have made explicit the colour trace generators.10

Recalling that the topological normalization of any disk amplitude with D3-strings

is [20]

C(4) =
1

π2 α′2 g2
YM

, (3.45)

one can show that in order to obtain gauginos with canonical dimension of (length)−3/2

and standard kinetic term of the form

1

g2
YM

∫
d4xTr

(
− 2i Λ̄α̇AD̄/

α̇βΛA
β

)
, (3.46)

one has to normalize the gaugino vertices with

NΛ = (2πα′)
3
4 . (3.47)

Then, using these ingredients the prefactor appearing in eq. (3.44) becomes

cF =
4

g2
YM

(2πα′)−
1
2 NF . (3.48)

From the explicit expression of the amplitude (3.44) we see that an IASD G-flux configu-

ration induces a Majorana mass11 for the gauginos leading to supersymmetry breaking on

the gauge theory [48, 10 – 12]. Notice that the mass term for the two different chiralities

are complex conjugate of each other: T IASD = −iGIASD and T ISD = i(GIASD)∗. This is a

consequence of the Majorana condition that the four-dimensional spinors inherit from the

Majorana-Weyl condition of the fermions in the original ten-dimensional theory.

If we decompose GIASD as indicated in table 3, we see that a G-flux of type (1, 2)P gives

mass to the three gauginos transforming non-trivially under SU(3) but keeps the SU(3)-

singlet gaugino massless, thus preserving N = 1 supersymmetry. On the other hand, a

G-flux of type (3, 0), or (2, 1)NP gives mass also to the SU(3)-singlet gaugino.

Things are rather different instead on D-instantons whose fermionic coupling is given

by eq. (3.24). Indeed, by inserting such coupling in eq. (3.9) and using again eq. (3.39) we

obtain

AD(−1) =
2πi

3!
cF (Θ)

[
ΘαAΘ B

α

(
Σ

mnp)
AB

GIASD
mnp + Θ̄α̇AΘ̄α̇

B

(
Σmnp

)AB
GISD

mnp

]
(3.49)

where now the prefactor cF (Θ) contains the topological normalization of the D(−1) disks

(the value of the gauge instanton action ), namely [20]

C(0) =
8π2

g2
YM

⇒ cF (Θ) =
8π2

g2
YM

N 2
Θ NF (3.50)

From the amplitude (3.49) we explicitly see that both the IASD and the ISD components

of the G-flux couple to the D-instanton fermions; however the couplings are different and

10We use the following normalization: Tr
`

T aT b
´

= 1
2

δab.
11Notice that this is the mass term for gauginos which are not canonically normalized, as we do not

rescale away the overall factor of 1/g2
YM appearing in eq. (3.46).
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independent for the two chiralities since they are not related by complex conjugation, as

always in Euclidean spaces. In particular, comparing eqs. (3.44) and (3.49), we see that an

ISD G-flux does not give a mass to any gauginos but instead induces a “mass” term for the

anti-chiral instanton zero-modes which are therefore lifted. This effect may play a crucial

role in discussing the non-perturbative contributions of the so-called “exotic” D-instantons

for which the neutral anti-chiral zero modes Θ̄α̇A must be removed [30, 31] or lifted by

some mechanism [36, 40]. Introducing an ISD G-flux is one of such mechanisms as we will

discuss in more detail in section 6.

4. Flux couplings with twisted open strings (~ϑ 6= 0)

As we have emphasized, the general world-sheet calculation presented in section 2 allows

to obtain the couplings between closed string fluxes and open string fermions at a generic

D-brane intersection, even for non-vanishing twist parameters ~ϑ. A systematic study of

the amplitudes (2.43) and (2.51) when ~ϑ 6= 0 will be presented elsewhere; here we just

analyze a simple case of such twisted amplitudes which will be relevant for the applications

discussed in section 6.

The case we discuss is that of the 3-form flux couplings with the twisted fermions

stretching between a D3-brane and a D-instanton which represent the charged (or flavored)

fermionic moduli of the N = 4 ADHM construction of instantons (see for example refs. [25,

20]) and are usually denoted as µA and µ̄A depending on the orientation. In the notation of

section 2 the D3/D(−1) and D(−1)/D3 strings are characterized by twist vectors of the form

~ϑ =

(
0, 0, 0,+

1

2
,+

1

2

)
and ~ϑ′ =

(
0, 0, 0,−1

2
,−1

2

)
(4.1)

respectively, and thus, according to eq. (2.19), the open string fermions in these sectors

have weight vectors

~ǫ1 =

(
~ǫA,−

1

2
,−1

2

)
and ~ǫ4 =

(
~ǫA,+

1

2
,+

1

2

)
. (4.2)

The notation ~ǫA (~ǫA) denotes an anti-chiral (chiral) spinor weight of the internal SO(6)

rotation group. The vertex operators corresponding to (4.2) (see eq. (2.15)) are then

Vµ(z) = Nµ µ
A
[
σ~ϑ s~ǫA

e−
1
2
φ
]
(z) and Vµ̄(z) = Nµ̄ µ̄

A
[
σ~ϑ′ s~ǫA

e−
1
2
φ
]
(z) (4.3)

where Nµ,Nµ̄ are suitable normalizations. Notice that since the last two components of

(~ǫ1+~ϑ) and (~ǫ4+~ϑ′) are zero, only a spin-field s~ǫA
= SA of the internal SO(6) appears in the

vertices (4.3); furthermore there is no momentum in any direction since µA, µ̄A are moduli

rather than dynamical fields. Note also that both µA and µ̄A carry the same SO(6) chirality.

On the other hand, the vertex operator for a R-R field strength contains two parts:

one with left and right weights of the type

~ǫ2 =
(
~ǫA,~ǫ α̇

)
and ~ǫ3 =

(
~ǫB,~ǫ β̇

)
, (4.4)
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and one with weights of the type

~ǫ2 =
(
~ǫA,~ǫα

)
and ~ǫ3 =

(
~ǫB,~ǫβ

)
, (4.5)

where ~ǫα (~ǫ α̇) are the chiral (anti-chiral) spinor weights12 of SO(4). We now show that

when the R-R field is an internal 3-form Fmnp only the part in (4.4) couples to the µ and µ̄’s.

Let us consider the general R-R amplitude (2.43) and take, for example, the σ = 0

boundary on the D(−1)-brane, i.e. R0 = −1 and R0 = iΓE
(11). Let us then observe that the

spinor reflection matrix can be effectively replaced by R0 = −i, since our GSO projection

selects the anti-chiral sector, and that the two ~ϑ ·~ǫ3-dependent integrals I1 and I2, defined

in (2.38), are scalars along the six internal directions because the internal components of
~ϑ are vanishing (see eq. (4.1)). All this implies that the term with a single Γ in (2.43)

vanishes, so that the only non-trivial contribution comes from the term with three Γ’s.

To proceed we need to evaluate the integral I2. In the limit s = −2t → 0, from

eq. (2.39) we easily find
(
I2
) A3

A3
=

1

2~ϑ · ~ǫ3

(
1 − e2πi~ϑ·~ǫ3

)
; (4.6)

recall that A3 is the spinor index corresponding to the weight ~ǫ3. There are two distinct

cases, corresponding to the two possibilities (4.4) and (4.5) respectively. In the first case

we have
~ϑ · ~ǫ3 = 0 ⇒

(
I2
) A3

A3
= −πi , (4.7)

while in the second case we have

~ϑ · ~ǫ3 = +
1

2
if ~ǫβ =

1

2

(
+ +

)
⇒

(
I2
) A3

A3
= +2 ,

~ϑ · ~ǫ3 = −1

2
if ~ǫβ =

1

2

(
−−

)
⇒

(
I2
) A3

A3
= −2 .

(4.8)

Using the explicit expression of the Γ matrices given in appendix A.1, it is not difficult to

realize that the above results can be summarized by writing

I2 = −πi

(
1 + Γ(7)

2

)
− 2i Γ01

(
1 − Γ(7)

2

)
(4.9)

where Γ(7) is the chirality matrix in the six-dimensional internal space. Indeed, restrict-

ing to the anti-chiral block, one can check that the first term in (4.9) accounts for the

matrix elements (4.7), while the second term for the matrix elements (4.8). At this point

it is clear that with an internal R-R 3-form flux Fmnp, the coefficient
(
FR0I2

)
mnp

of the

amplitude (2.43) can only receive contribution from the first term in (4.9), which yields

AF ∼ µ̄AµB
(
Σ

mnp)
AB

F IASD
mnp . (4.10)

The evaluation of coupling with an internal NS-NS 3-form flux Hmnp is much simpler.

In fact the left and right weights appearing in the NS-NS vertex operator are

~ǫ2 =
(
± ~em ± ~en,~0

)
and ~ǫ3 =

(
± ~ep,~0

)
, (4.11)

12In our conventions, as explained in appendix A.1, α ∈ { 1
2
(++), 1

2
(−−)} and α̇ ∈ { 1

2
(−+), 1

2
(+−)}.
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coordinates h0 h1 h2 h3

Z1 + + − −
Z2 + − + −
Z3 + − − +

Table 4: Orbifold group action on the complex coordinates Zi of T 6.

with ~em,n,p unit vectors in the SO(6) weight space specifying the Hmnp-hyperplane. Thus,

we always have ~θ · ~ǫ3 = 0 which implies that the entries of the two diagonal matrices I1
and I2 (with vector indices) are

2
(
I1
)P

P
=
(
I2
)P

P
= −πi . (4.12)

Thus, from eq. (2.51) we see that the term with a single Γ vanishes, while the term with

three Γ’s yields

AH ∼ µ̄AµB
(
Σ

mnp)
AB

HIASD
mnp . (4.13)

Collecting the two contributions (4.10) and (4.13) and reinstating the appropriate

normalizations, we finally obtain

AD3/D(−1) ≡ AF + AH =
4πi

3!
cF (µ) µ̄AµB

(
Σ

mnp)
AB

GIASD
mnp (4.14)

where cF (µ) = C(0) Nµ Nµ̄ NF with C(0) given in eq. (3.50). Notice that no symmetry factors

has to be included in this amplitude, since µ and µ̄ are really distinct and independent

quantities. This amplitude together with the one in eq. (3.49) accounts for the flux induced

fermionic couplings on the D-instanton effective action, and their meaning will be discussed

in section 6.

5. Flux couplings in an N = 1 orbifold set-up

The results of the previous sections clearly show that internal NS-NS and R-R fluxes bear

important consequences on the brane effective action and may be relevant in phenomeno-

logical applications. Therefore it is particularly interesting to study such flux interactions

in models with N = 1 supersymmetry. To do so we adopt a toroidal orbifold compactifi-

cation scheme where string theory remains calculable and the flux couplings are basically

those described in section 3. We consider type IIB theory compactified on a Calabi-Yau

3-fold with the N = 2 bulk supersymmetry further broken down to N = 1 by the intro-

duction of D-branes and O-planes. To be specific we consider the orbifold T6/(Z2 × Z2)

with T6 completely factorized as a product of three 2-torii. The action of Z2 × Z2 on the

orthonormal complex coordinates Zi (i = 1, 2, 3) of the torus is in table 4. In order to be

self-contained we now briefly recall the structure of the closed string multiplets and the

pattern of fractional D-branes that can be introduced in this orbifold.
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5.1 Closed and open string sectors in the Z2 × Z2 orbifold

Closed string states. Let us start by considering the oriented closed string states before

the introduction of O-planes. The massless closed string states in the orbifold organize

into a gravity multiplet, h2,1 vector multiplets and h1,1 + 1 hypermultiplets of the N = 2

supersymmetry. For strings defined on the quotient space, the orbifold projection onto

Z2 ×Z2 invariant states has to be enforced and as usual we distinguish between untwisted

and twisted sectors.

The untwisted sector follows from that on T 6 after restricting to Z2 × Z2-invariant

components. It contains: the gravity multiplet; the universal hypermultiplet having as

bosonic components the dilaton ϕ, the axion C0 and the dualized NS-NS and R-R 2-

forms B2 and C2 with four dimensional indices; huntw
21 = 3 vector multiplets with bosonic

components (V i, ui) where the scalars ui parametrize the complex structure deformations;

huntw
11 = 3 hypermultiplets containing the scalars (vi, bi, ci, c̃

i) with vi representing the

Kähler parameter of the i-th torus, bi and ci the components of the NS-NS and R-R 2-

forms along the i-th torus, and c̃i the R-R 4-form components along the dual 4-cycle.

Closed strings on the Z2 × Z2 orbifold have also twisted sectors associated to each

of the three non trivial elements hi and localized at the 16 possible fixed loci of their

action; the total number of twisted sectors is therefore 3 × 16 = 48. To fully specify the

orbifold model, we must declare the action of the group elements hi also on the twist

fields. There are two consistent possibilities, which correspond to the singular limits of

two different CY manifolds with (h11, h21) = (51, 3) and (h11, h21) = (3, 51). Here we

restrict ourselves to the first choice,13 corresponding to take all twisted fields invariant

under hi. With this choice, the twisted sectors contribute to the massless spectrum with

htw
11 = 48 hypermultiplets containing the scalars (vî, b̂i, ĉi, c̃

î), î = 1, . . . 48, which describe,

respectively, the deformations of the blow-up modes of the vanishing 2-cycles and the

exceptional components of the NS-NS 2-form and of the R-R 2- and 4-forms. It is important

to recall that the orbifold limit is attained with a non-zero background value of the NS-NS

B-field on the vanishing cycles [61], so that the scalar fields b̂i mentioned above represent

fluctuations around this value.

Finally the introduction of O-planes projects the spectrum onto the subset of ΩI-

invariant states with Ω the worldsheet parity and I some involution of the CY threefold.

The resulting spectrum falls into vectors and chiral multiplets of the unbroken N = 1

supersymmetry. The details depends on the choice of the O-planes. For example for a

vacuum built out of O3/O7-planes, B2 and C2 are odd while for O5/O9 planes, B2 and

C4 are odd. As a consequence, in the twisted sector either b̂i and ĉi, or b̂i and c̃î would be

projected out for the O3/O7 and O5/O9-choices respectively.

Open string states and fractional D-branes. The fundamental types of D-branes

which can be placed transversely to an orbifold space are called fractional branes [62].

Such branes must be localized at one of the fixed points of the orbifold group (which in

13The second choice corresponds to declare that the twist field ∆ij in the four-dimensional plane (ij)

transforms in the representation |ǫijk|Rk.
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irrep RA fields

R0 Aµ Λ0 ≡ Λ−−− Λ̄0 ≡ Λ̄+++

R1 φ1 Λ1 ≡ Λ−++ Λ̄1 ≡ Λ̄+−−

R2 φ2 Λ2 ≡ Λ+−+ Λ̄2 ≡ Λ̄−+−

R3 φ3 Λ3 ≡ Λ++− Λ̄3 ≡ Λ̄−−+

Table 5: Representation of the orbifold group on the N = 4 open string fields

N1

N2

N0

N3

Figure 2: The quiver diagram encoding the field content and the charges for fractional D-branes

of in the local orbifold C3/(Z2 × Z2). The dots represent the branes associated with the irrep RA

of the orbifold group. A stack of NA such branes supports a U(NA) gauge theory. An oriented link

from the A-th to the B-th dot corresponds to a chiral multiplet φAB transforming in the (NA, NB)

representation of the gauge group and in the RAR
−1

B
representation of the orbifold group.

our case are 64). For simplicity we focus on fractional D3 branes sitting at a specific

fixed point (say, the origin) and work around this configuration. Locally our system is

undistinguishable from the theory living on the non-compact orbifold C
3/(Z2 × Z2).

The fractional branes are in correspondence with the irreducible representations RA

of the orbifold group: in fact the Chan-Paton indices of an open string connecting two

fractional branes of type A and B transform in the representation RA ⊗ RB . In addition

the orbifold group acts on the SO(6) internal indices of the open string fields as indicated

in table 5. This action should be compensated by that on the Chan-Paton indices in such

a way that the whole field is Z2×Z2 invariant. For example the vector Aµ and the gaugino

Λ0 are invariant under the orbifold group and therefore they should carry indices (NA,NA)

in the adjoint of the
∏3

A=0 U(NA). The remaining fields fall into chiral multiplets trans-

forming in the bifundamental representations (NA,NB). The resulting quiver diagram is

displayed in figure 2.

To discuss the couplings of fractional branes to closed strings, it may be convenient to

describe the branes by means of boundary states [63, 64], which we indicate schematically

as |A〉 for a brane of type A. It turns out (see for example ref. [65]) that these boundary

states |A〉 are suitable combinations of boundary states |I〉〉 associated to the hI -twisted

sector, namely

|A〉 =
1

4

∑

I

(Ch)IA|I〉〉 . (5.1)
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with (Ch)IA = trRA
(hI). In our orbifold, using the character table (8) given in appendix A.2,

these sums explicitly read [66]

|0〉 =
1

4

(
|0〉〉 + |1〉〉 + |2〉〉 + |3〉〉

)
, |1〉 =

1

4

(
|0〉〉 + |1〉〉 − |2〉〉 − |3〉〉

)
,

|2〉 =
1

4

(
|0〉〉 − |1〉〉 + |2〉〉 − |3〉〉

)
, |3〉 =

1

4

(
|0〉〉 − |1〉〉 − |2〉〉 + |3〉〉

)
.

(5.2)

These boundary states show that the fractional D3-branes couple not only to twisted closed

string fields but to untwisted ones as well, with a fractional tension and a fractional charge

given by 1/4 of the ones of the regular branes.

The fractional branes corresponding to RA (A 6= 0) can also be interpreted geometri-

cally as D5-branes suitably wrapped on exceptional14 2-cycles eÂ in the blown-up space.

To this extent, the background value of the NS-NS 2-form B2 in the orbifold limit plays a

crucial role in accounting for the untwisted couplings of the branes. We will take advantage

of this description in the remaining of this section when we interpret the flux couplings

computed in section 3 in the effective low-energy supergravity theory.

5.2 Gauge kinetic functions and soft supersymmetry breaking on D3-branes

In presence of D-branes the N = 2 bulk supersymmetry of the chosen compactification is

reduced to a specific N = 1 slice depending on the boundary conditions imposed by the

branes on the spin fields, which are encoded in the spinor reflection matrix R0 of eq. (2.12).

The supersymmetry left unbroken by D-branes should be aligned to that preserved by O-

planes and tadpole conditions should be enforced. As a consequence, the field content of

the bulk theory is reorganized into N = 1 multiplets; in particular the compactification

moduli, as well as the dilaton and axion fields, are assembled into complex scalars within

suitable chiral superfields, which couple to the N = 1 vector and chiral multiplets living

on the D-branes.

The tree-level effective action on the D-branes can be obtained in the field theory limit

α′ → 0 from disk diagrams and takes the standard form of an N = 1 supersymmetric action

in which the couplings are actually functions of the moduli due to the possible interactions

with closed string fields. In particular, the gauge Lagrangian depends on the bulk moduli

M via its “gauge kinetic function” f(M) which encodes the information on the Yang-Mills

coupling gYM and the θ-angle θYM according to

f(M) =
θYM

2π
+ i

4π

g2
YM

, (5.3)

so that the quadratic part in the gauge field strengths reads

− 1

8π

∫
d4x Im f(M)Tr

(
FµνF

µν
)

+
1

8π

∫
d4x Re f(M)Tr

(
Fµν

∗Fµν
)
. (5.4)

Actually, the residual supersymmetry implies that the gauge Lagrangian takes the form

− i

8π

∫
d2θ f

(
M(θ)

)
Tr
(
Wα(θ)Wα(θ)

)
+ c.c. (5.5)

14Since we focus on branes localized at the origin, for each A we consider only one of the 16 possible

exceptional cycles eÂ.
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where Wα(θ) is the N = 1 gauge superfield whose lowest component is the gaugino Λα,

while the moduliM in the gauge kinetic function f get promoted to chiral superfieldsM(θ).

This is very interesting in two respects. First, the determination of the gauge kinetic

functions for different types of branes preserving the same N = 1 supersymmetry suggests

a way to assemble the bulk moduli and their superpartners into N = 1 chiral multiplets.

Second, the Lagrangian (5.5) contains a gaugino mass term, which arises whenever the θ2

component of f
(
M(θ)

)
assumes a non-zero vacuum expectation value. As we will see such

mass terms can be related to the flux-induced fermionic couplings computed in section 3

(see in particular eq. (3.44)). To establish the precise relation we need to determine both

the gauge kinetic functions for the D-branes used to engineer the gauge theory, and the

appropriate complex combinations of the compactification moduli M that can be promoted

to chiral superfields. This is what we do in the following.

Gauge kinetic function. Let us take a fractional D3-brane, say of type A. To deduce its

gauge kinetic function fA we have several possibilities. We can derive the quadratic terms

in the gauge fields of eq. (5.4) from disk diagrams, with the boundary attached to the brane

and with two open string vertices for the gauge field inserted on the boundary and closed

string scalar vertices in the interior. Alternatively, we can compute the coupling among

closed strings and the boundary state |A〉F representing the fractional D3-brane with a

constant magnetic field F turned on in the world-volume and infer from it the gauge

kinetic function fA (see e.g. ref. [67]). Finally, we can simply read off the coupling from

the Dirac-Born-Infeld (DBI) and Wess-Zumino (WZ) actions of the fractional D3-brane.

The last option is viable if one regards the fractional D3-branes of type A as D5-branes

wrapped15 on the twisted 2-cycle êA, as recalled in section 5. In this case the DBI action

with an additional Wess-Zumino term for the D5-brane (in the string frame) is

SD3,A = −T5

∫

D3

∫

êA

e−ϕ
√

− det (G+ F) + T5

∫

D3

∫

êA

3∑

n=0

C2n e
F , (5.6)

where F = B2 + 2πα′F , and T5 = T3/(4π
2α′) with T3 = (2π)−1(2πα′)−2 being the D3-

brane tension. Expanding to quadratic order in F and using the non-zero background value

of B2 along the vanishing cycles [61]
∫

êA

B2 =
1

4
(4π2α′) (5.7)

one finds

SD3,A = − 1

16π

∫

D3
e−ϕ FµνF

µν +
1

16π

∫

D3
C0 Fµν

∗Fµν + · · · . (5.8)

Promoting these expressions to the non-abelian case, which results in an extra factor of

1/2 due to the normalization of the colour trace, and comparing with eq. (5.4), we can

read off that the gauge kinetic function for the fractional D3-brane of type A is

fA(M) =
τ

4
, (5.9)

15This extends to the case of the fractional brane of type 0 by interpreting it as a D5-wrapped on
P3

A=1 êA

with negative orientation and with a suitable magnetic flux turned on.
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with

τ ≡ C0 + ie−ϕ (5.10)

the axion-dilaton field. Combining eq. (5.9) with eqs. (5.3) and (5.10) leads to

g2
YM = 16πeϕ and θYM =

πC0

2
. (5.11)

The way to arrange the remaining untwisted and twisted scalars as the complex bosons of

suitable chiral multiplets is suggested, as remarked above, by the gauge kinetic functions of

other D-branes maintaining the same N = 1 supersymmetry selected by the fractional D3-

branes. For the untwisted scalars, we can just consider “regular” branes, such as D7-ones

wrapped on one of the untwisted 4-cycles. Starting from the wrapped D7-brane DBI-WZ

action, in the end one finds (see for instance ref. [2]) that the gauge kinetic function for

these branes is

fi(M) = ti with ti ≡ c̃i +
i

2
|ǫijk|vjvk (5.12)

where vi and c̃i have been defined at the beginning of this section. The complex fields ti

represent the correct (untwisted) Kähler coordinates to be used for the N = 1 supergravity

associated to CY compactifications with D3/D7-branes and O3/O7-planes, together with

the τ variable defined in eq. (5.10). Notice also that the imaginary parts of the coor-

dinates (5.12) are related to the volume V of the T6/Z2 × Z2 orbifold, measured in the

Einstein frame; in fact (
Im t1 Im t2 Im t3

) 1
2

= v1v2v3 = V . (5.13)

Let us now return to the gauge theory defined on the fractional D3-branes and on its

gauge kinetic function fA = τ/4. The modulus τ is connected by the residual supercharges

to other closed string states and it can be promoted to a chiral superfield τ(θ). The

complete Lagrangian of the fractional D3-branes, given in eq. (5.5), contains then also the

coupling of the gaugino Λα to the auxiliary component F τ of τ(θ), namely

− i

8π

F τ

4
Tr
(
ΛαΛα

)
+ c.c. , (5.14)

which corresponds to the following mass

mΛ =
1

2Im fA

F τ

4
=

eϕ F τ

2
(5.15)

for canonically normalized gaugino fields.

The bilinear term (5.14) must coincide with the flux-induced coupling we have com-

puted in section 3.4. In fact, in presence of a G-flux the gauginos acquire mass terms

given by eq. (3.44) which must be adapted to our N = 1 orbifold model. This is easily

done by taking only the invariant gaugino Λ0 ≡ Λ. Using appendix A.1 (and in particular

eq. (A.22)) we find that the only component of the GIASD
mnp tensor which contributes to

eq. (3.44) when A = B = 0, is its (3, 0) part; thus, after combining eqs. (3.48) and (5.11),

we find that the flux-induced gaugino mass term for fractional D3-branes reads

− i

2
e−ϕ (2πα′)−

1
2NF G(3,0) Tr

(
ΛαΛα

)
+ c.c. . (5.16)
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Comparing with eq. (5.14), we finally deduce that

F τ = 16π e−ϕ (2πα′)−
1
2NF G(3,0) . (5.17)

Later in this section, we will fix the normalization NF of the flux vertex by requiring

that this expression for F τ matches the one obtained by constructing the bulk low energy

Lagrangian.

Comparison with the bulk theory. It is well known (see for example refs. [11, 68])

that the bulk theory for our toroidal compactification yields, after a dimensional reduction

to four dimensions and a Weyl rescaling to the d = 4 Einstein frame, a N = 1 supergravity

theory coupled to vector and matter multiplets in the standard form. This effective theory

is therefore specified, besides the gauge kinetic function for the bulk vector multiplets, by

the Kähler potential K and by the holomorphic superpotential W for the chiral multiplets.

To simplify the treatment, in the following we consider as dynamical only a subset of

the compactification moduli; in particular we keep the dependence on the universal chiral

multiplet τ of eq. (5.10), but restrict to a slice of the Kähler moduli space in which an

overall scale

t ≡ t1 = t2 = t3 (5.18)

is considered. Such a scale is related to the compactification volume by V = (Im t)3/2

as it follows from eq. (5.13). We also freeze the complex structure moduli ui to their

“trivial” value corresponding to T6 being the product of three upright tori, i.e. we set

u1 = u2 = u3 = i; furthermore we neglect the dependence on all the remaining twisted and

untwisted moduli.

With these assumptions, the Kähler potential for the bulk theory is

K = − log(Im τ) − 3 log(Im t) . (5.19)

When internal 3-form fluxes are turned on, a non-trivial bulk superpotential appears [7, 8]

and its expression is

W =
1

κ2
10

∫
G ∧ Ω =

4

κ2
4

G(0,3) (5.20)

where Ω is the holomorphic 3-form of the internal space, and κ10 and κ4 are, respectively,

the gravitational constants in ten and four dimensions.16 In eq. (5.20) the 3-form flux is

G = F − τ H (5.21)

which is the natural extension of eq. (3.20) when gs is promoted to eϕ and the presence of

a non-vanishing axion C0 is taken into account. Note that W has the correct dimensions

of (length)−3, since κ4 is a length and the flux is a mass, and that only the ISD component

G(0,3) of G is responsible for a non-vanishing W .

16In our case the holomorphic 3-form is simply given by Ω = dZ1 ∧ dZ2 ∧ dZ3. In our conventions, we

have
R

Ω̄ ∧ Ω = (2π
√

α′)6, while κ2
10/κ2

4 = (2π
√

α′)6/4, where the factor of 1/4 represents the order of the

orbifold group.
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In presence of a superpotential W , the auxiliary fields in the chiral multiplets are given

by the standard supergravity expressions which in our case become

F
τ̄

= −iκ2
4 eK/2K τ̄ τ DτW = 8

e−ϕ/2

V G(0,3) ⇒ F τ = 8
e−ϕ/2

V G(3,0) ,

F
t̄
= −iκ2

4 eK/2K t̄tDtW = 8
eϕ/2

V 1
3

G(0,3) ⇒ F t = 8
eϕ/2

V 1
3

G(3,0) ,

(5.22)

where G is the complex conjugate of G, K τ̄τ and K t̄t are the inverse Kähler metrics for τ

and t respectively, and the Kähler covariant derivatives of the superpotential are defined

as DiW = ∂iW +
(
∂iK

)
W . Thus, by comparing the expression of F τ derived from the

flux-induced gaugino mass and given in eq. (5.17) with eq. (5.22), we find perfect agreement

in the structure and can fix the normalization of the closed string vertex for the flux to be

NF =
eϕ/2

2πV (2πα′)
1
2 . (5.23)

From eq. (3.5) we also infer that (promoting gs to eϕ)

NH =
e−ϕ/2

2πV (2πα′)
1
2 . (5.24)

With these normalizations, the closed string vertices (2.20) and (2.23) can be used to derive

directly from string amplitudes the terms in the four dimensional effective Lagrangian in the

Einstein frame, and the resulting expressions do indeed have the correct normalization that

follows from the dimensional reduction of the original Type IIB action in ten dimensions.

In this perspective, we point out that the scalar potential due to the chiral multiplets,

which has the form

VF = κ2
4 eK

(
Kτ τ̄DτWDτ̄W̄ +Ktt̄DtWDt̄W − 3 |W |2

)

=
16

κ2
4

eϕ

V2
G(3,0)G(0,3) =

1

κ2
4

∣∣∣4
eϕ/2

V G(3,0)

∣∣∣
2
,

(5.25)

coincides with the kinetic terms for the R-R and NS-NS 3-forms in the ten dimensional

Einstein frame, given in eq. (3.4), after dimensional reduction to d = 4 and rescaling to

the four dimensional Einstein frame, if only the (3,0) and (0,3) components of the fluxes

are turned on.

Let us also recall that the last term of VF in the first line of eq. (5.25) is a purely

“gravitational” contribution, related to the gravitino mass

∣∣m3/2

∣∣ = κ2
4 eK/2

∣∣W
∣∣ =

∣∣∣4
eϕ/2

V G(0,3)

∣∣∣ . (5.26)

From these equations, we see clearly the very different rôle of the ISD flux G(0,3), which

induces a gravitino mass, with respect to the IASD flux G(3,0), which is instead respon-

sible for the gaugino mass term. The latter is described by eq.s (5.14) and (5.22) which

correspond, according to eq. (5.15), to a canonical gaugino mass

∣∣mΛ

∣∣ =
∣∣∣4

eϕ/2

V G(3,0)

∣∣∣ . (5.27)
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These very well-known results [10 – 12] will be generalized and extended to instantonic

branes in the following section, and the effects on the instanton moduli space of a flux-

induced mass term for the gaugino or the gravitino will be determined. We conclude this

section by mentioning that the same analysis we have described for fractional D3 branes

can be performed without any difficulty in the case of fractional D9 branes. Some details

on this are provided in appendix A.3.

6. The rôle of fluxes on fractional D-instantons

In sections 3 and 4 we have computed the fermionic bilinear couplings of the NS-NS and

R-R bulk fluxes to open strings with at least one end-point on the D-instanton. The

results (3.49) and (4.14) describe deformations of the instanton moduli space of the N = 4

gauge theory living on the D3-brane. We now discuss the meaning of these interaction

terms in a simple example within the context of the N = 1 orbifold compactification

introduced in the last section.

Consider a specific node A of the quiver diagram represented in figure 2 and put on

it N fractional D3 branes and one fractional D-instanton. The latter describes the k = 1

gauge instanton for the N = 1 U(N) Yang-Mills theory defined on the world-volume of

the space-filling D3-branes. The open strings with at least one end point on it account

for the instanton zero-modes in the ADHM construction [17 – 20]. Specifically, for the

D(−1)/D(−1) strings, we have the four bosonic zero-modes xµ and three auxiliary zero-

modes Dc from the NS sector plus two chiral zero-modes θα and two anti-chiral zero-modes

λα̇ from the R sector. Besides these neutral modes, there are also charged zero-modes from

the D3/D(−1) and D(−1)/D3 strings comprising the bosons w u
α̇ and w̄α̇u from the NS

sector, and the scalar fermions µu and µ̄u from the R sector, where the upper (or lower)

index u belongs to the fundamental (or anti-fundamental) representation of U(N).

The action of the N = 1 fractional D-instanton zero-modes turns out to be (see e.g.

ref. [25])

Sinst = 2πi fA + iλα̇

(
µ̄uw

α̇u + w̄α̇
uµ

u
)
− iDc w̄α̇u(τ c)α̇

β̇
wβ̇u (6.1)

where fA = τ/4 is the gauge kinetic function (5.9) and τ c are the three Pauli matrices.

Note that neither xµ nor θα appear in SD(−1); in fact they are the Goldstone modes of the

supertranslation symmetries broken by the instanton and as such can be identified with

the superspace coordinates of the N = 1 theory. On the other hand λα̇ and Dc appear

only linearly in SD(−1): they are Lagrange multipliers enforcing the so-called super ADHM

constraints. The action (6.1) can be easily derived by computing (mixed) disk amplitudes

with insertions of vertex operators representing the various zero-modes [20].

Let us focus in particular on the fermionic moduli. The neutral zero-modes θα and λα̇

are clearly described by the chiral and anti-chiral components of the D(−1)/D(−1) fermion

that is invariant under the orbifold action (i.e. with an internal spinor index 0), namely

Θα0 ∼ g0 θ
α and Θα̇0 ∼ λα̇ . (6.2)

The extra power of the D(−1) gauge coupling g0 = 1√
π
(2πα′)−1eϕ/2 accounts for the correct

scaling dimensions that allow to interpret θα as the fermionic superspace coordinate with
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dimensions of (length)1/2. On the other hand, as mentioned above, λα̇ is the Lagrange

multiplier for the fermionic ADHM constraint and carries dimensions of (length)−3/2, so

that no rescaling is needed.

In the charged sector the fermionic moduli µu and µ̄u correspond to the Z2 × Z2

invariant fermions of the strings stretching between the D3-branes and the D-instanton so

that, using the notation of section 4, for each colour we have

µ0 ∼ g0 µ and µ̄0 ∼ g0 µ̄ . (6.3)

As before, an extra power of g0 is included to account for the correct (length)1/2 dimensions

of the charged moduli µ, µ̄. The normalizations17 of the fermionic string vertices can then

be written as [20]

Nλ = (2πα′)
3
4 , Nθ = 4

√
π e−ϕ/2 g0√

2
(2πα′)

3
4 Nµ = Nµ̄ =

g0√
2
(2πα′)

3
4 . (6.4)

We are now ready to study how the bulk R-R and NS-NS fluxes modify the moduli

action. Actually in section 3 we have already computed the flux interactions with the

untwisted fermions of a D(−1)-brane (see eq. (3.49)) while in section 4 we computed the

flux couplings to the twisted fermions of the D3/D(−1) system (see eq. 4.14). So what

we have to do now is simply to insert in these equations the appropriate normalizations

discussed above and take into account the identifications of the fluxes with the bulk chiral

multiplets explained in the previous section. The flux induced terms in the instanton

moduli action are thus18

Sflux
inst = −Aflux

D(−1) −Aflux
D3/D(−1) (6.5)

where Aflux
D(−1) and Aflux

D3/D(−1) are the A = B = 0 parts of the amplitudes (3.49) and (4.14),

i.e.

Aflux
D(−1) = −2πi cF (θ) θαθαG(3,0) + 2πi cF (λ)λα̇λ

α̇G(0,3) ,

Aflux
D3/D(−1) = −4πi cF (µ) µ̄u µ

uG(3,0) .

(6.6)

In these expressions we have distinguished the cF coefficients for the various terms to

account for the appropriate normalizations of the moduli as discussed before. Recalling

that the normalization C(0) of the disk amplitudes is given by eq. (3.50) with g2
YM defined

in (5.11), and that the G fluxes are normalized as indicated in eq. (5.23), we find

cF (θ) = C(0) NF N 2
θ = 2

e−ϕ/2

V ,

cF (λ) = C(0) NF N 2
λ = (2πα′)2

e−ϕ/2

4V ,

cF (µ) = C(0) NF N 2
µ =

eϕ/2

8πV .

(6.7)

17The extra factor of 4
√

π e−ϕ/2 in the definition of Nθ with respect to [20] is needed, as we will see, in

order to identify θ with the superspace coordinates.
18Recall that in Euclidean spaces there is a minus sign in going from an amplitude to an action.
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Notice that all factors of α′ cancel in cF (θ) and cF (µ), but they survive in cF (λ) whose

scaling dimension of (length)4 is the correct one for the λ2 term of Aflux
D(−1) in (6.6) to be

dimensionless. Using these coefficients in (6.6) and exploiting the results of the previous

section (in particular eqs. (5.27) and (5.26)), we can rewrite the flux-induced moduli action

as follows

Sflux
inst = 4πi

e−ϕ/2G(3,0)

V θαθα − iπ (2πα′)2
e−ϕ/2G(0,3)

2V λα̇λ
α̇ + i

G(3,0)

2V µ̄uµ
u

=
iπ

2
F τ θαθα − iπ

8
κ2

4 (2πα′)2 e−ϕ eK/2 λα̇λ
α̇ +

i eϕ

16
F τ µ̄uµ

u .

(6.8)

The θ2 term represents the auxiliary component of the gauge kinetic function fA = τ/4,

which is therefore promoted to the full chiral superfield fA(θ) = τ(θ)/4 in complete (and

expected) analogy with what happened on the D3-branes. The other two terms are less

obvious: they represent the explicit effects of a background G flux on the instanton mod-

uli space, and are the strict analogue for the instanton action of the soft supersymmetry

breaking terms of the gauge theory. In particular the µ̄µ term is related to the IASD

flux component G(3,0) which is responsible for the gaugino mass mΛ, while the λ2 term

represents a truly stringy effect on the instanton moduli space and is related to the ISD

flux component G(0,3) which gives rise to the gravitino mass m3/2.

The study of these terms, of their consequences for the instanton calculus and of the

non-perturbative effects that they may induce in the gauge theory will be presented in

a companion paper [69]. Here we simply mention that the above analysis can be easily

generalized to SQCD models with flavored matter in the fundamental (anti-fundamental)

representation and also to configurations in which the fractional D-instanton occupies a

node of the quiver diagram which is not occupied by the colored or flavored space-filling

branes. For these “exotic” instanton configurations there are no bosonic moduli wα̇ and

w̄α̇ and the action (6.1) simply reduces to first term involving the gauge kinetic function.

Since the neutral anti-chiral fermionic moduli λα̇ do not couple to anything, to avoid a

trivial vanishing result upon integration over the moduli space, it is necessary to remove

them or to lift them. As we have explicitly seen, by coupling the fractional D-instanton

to an ISD G-flux of type (0,3) it is possible to achieve this goal exploiting the λ2 term

proportional to the gravitino mass.

Finally, we observe that using the explicit expression (3.29) of the fermionic coupling,

the flux-induced moduli amplitude on a E3 instanton Aflux
E3 contains terms of the form

θαθα Ḡ(3,0) and λα̇λ
α̇ Ḡ(0,3) (6.9)

where Ḡ(3,0) and Ḡ(0,3) are, respectively, the (3, 0) and (0, 3) components of Ḡ = F + i
gs
H.

Thus, on a E3 instanton aG-flux of type (2,1) or (0,3) cannot lift the λα̇’s since its conjugate

flux Ḡ does not contain a (0, 3)-component, in full agreement with the findings of ref. [36].

However, as is clear from (6.9), a G-flux of type (3,0) can lift the anti-chiral zero-modes λα̇.

7. Summary of results

In this paper we have computed the couplings of NS-NS and R-R fluxes to fermionic
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bilinears living on general brane intersections (including instantonic ones). The couplings

have been extracted from disk amplitudes among two open string vertex operators and

one closed string vertex representing the background fluxes. The results for the R-R and

NS-NS amplitudes are given in eqs. (2.43) and (2.51). At leading order in α′ they describe

fermionic mass terms induced at linear order in the R-R and NS-NS fluxes for open string

modes with boundary conditions encodes in the magnetized reflection matrices R0,R0 and

the open string twists ~ϑ.

The case ~ϑ = 0 corresponds to open strings starting and ending on two parallel D-

branes. The result in this case can be written in the simple form

A = −2πi

3!
cF ΘΓMNP ΘTMNP (7.1)

where cF is a normalization factor and

TMNP =
(
FR0

)
MNP

+
3

gs

(
∂BR0

)
[MNP ]

. (7.2)

This formula shows that different branes couple to different combinations of the R-R and

NS-NS fields. For compactifications to d = 4 in presence of 3-form internal fluxes the

explicit form of the T tensors are displayed in table 1 for spacetime filling D-branes and in

table 2 for instantonic branes. For spacetime filling branes, the T -tensor describes the struc-

ture of soft fermionic mass terms for a general D-brane intersection. For Euclidean branes,

they accounts for fermionic mass terms in the instanton moduli space action modifying the

fermionic zero mode structure of the instanton. Our results are in perfect agreement with

those of refs. [10, 12, 48, 50 – 53] that have been derived with pure supergravity methods

and generalize them to generic (instantonic or not) D-brane intersections. The effects of

open string magnetic fluxes can be easily incorporated into these formulas via the reflection

matrices R0(F) and R0(F). As an example, the explicit form of the T -tensor for Euclidean

magnetized E5-branes has been given in eq. (3.36).

The cases of open strings ending on D3-branes and D-instantons have been studied in

detail. For D3-branes in flat space one obtains

AD3 =
2πi

3!
cF (Λ)Tr

[
ΛαAΛ B

α

(
Σ

mnp)
AB

GIASD
mnp − Λ̄α̇AΛ̄α̇

B

(
Σmnp

)AB (
GIASD

mnp

)∗ ]
(7.3)

with G = F − τH, GIASD its imaginary anti-self-dual part and cF (Λ) a normalization

factor. This formula encodes the structure of soft symmetry breaking terms in N = 4

gauge theory induced by NS-NS and R-R fluxes.

The coupling of fluxes to D-instantons is given instead by

AD(−1) =
2πi

3!

[
cF (θ) θαAθ B

α

(
Σ

mnp)
AB

GIASD
mnp + cF (λ)λα̇Aλ

α̇
B

(
Σmnp

)AB
GISD

mnp

]
. (7.4)

The case ~ϑ 6= 0 describes the couplings of open strings stretching between non-parallel

stacks of D-branes. For spacetime filling D-branes the corresponding open string excitations

describe chiral matter transforming in bi-fundamental representations of the gauge group

and always contain massless chiral fermions. The case, where open strings are twisted by
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ϑ = 1
2 along the spacetime directions, describes the charged moduli of gauge or exotic

instantons. For gauge instantons in N = 4 gauge theory one finds the flux induced action

AD3/D(−1) =
4πi

3!
cF (µ) µ̄AµB

(
Σ

mnp)
AB

GIASD
mnp . (7.5)

The results obtained here extend straightforwardly to less supersymmetric theories and to

exotic instantons. In particular for pure N = 1 SYM, the flux couplings for both gauge

and exotic instantons follow from (7.3), (7.4), (7.5) by restricting the spinor components

to A = B = 0. The only contributions to fermionic mass terms come in this case from

the components G(3,0) and G(0,3) related to the soft symmmetry breaking gaugino and

gravitino masses. Explicitly for T6/(Z2 × Z2) we have

∣∣mΛ

∣∣ =
∣∣∣
κ2

4

2
eϕ eK/2DτW

∣∣∣ =
∣∣∣4

eϕ/2

V G(3,0)

∣∣∣ ,
∣∣m3/2

∣∣ =
∣∣∣κ2

4 eK/2W
∣∣∣ =

∣∣∣4
eϕ/2

V G(0,3)

∣∣∣ ,
(7.6)

and the fermionic flux couplings can be written as

AD3 = − i

16π
mΛ e−ϕ Tr

[
ΛαΛα

]
+ c.c. ,

AD(−1) = −πimΛ e−ϕ θαθα +
πi

8
(2πα′)2m3/2 e−ϕ λα̇λ

α̇ ,

AD3/D(−1) = − i

8
mΛ µ̄uµ

u .

(7.7)

These flux couplings modify the zero mode structure of the instanton and allow for new low

energy coupling in the D3-brane action. In particular, we observe that the presence of λ-

fermionic zero modes typically signals an obstruction to the generation of non-perturbative

superpotentials via exotic instantons. This difficulty can be overcome by the introduction

of an O-plane leading to O(1)-instantons with no λ-modes. The presence of the λ2-term

in (7.7) suggests that R-R and NS-NS fluxes can provide a valid alternative mechanism in

the case of oriented gauge theories. A precise study of the low energy couplings generated

by instantons in presence of such fluxes will be presented in the companion paper [69].
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A. Technical details

A.1 Notations and conventions

We use the following notations for space-time indices in the real basis:

– 37 –



J
H
E
P
1
0
(
2
0
0
8
)
1
1
2

• d = 10 vector indices: M,N, . . . ∈ {0, . . . , 9};

• d = 4 vector indices: µ, ν, . . . ∈ {0, . . . , 3};

• d = 6 vector indices: m,n, . . . ∈ {4, . . . , 9}.

The corresponding complex indices are denoted by I, J = 1, . . . , 5 with I = i = 1, 2, 3

referring to the coordinates of the six-dimensional space and I = 4, 5 referring to the four-

dimensional space-time directions. Even with Euclidean signatures we use the real index 0.

Γ-matrices in ten dimensions. In a d = 10 Euclidean space the Γ matrices which

satisfy
{
ΓM ,ΓN

}
= 2δMN , can be given the following explicit representation in terms of

the Pauli matrices τ c:
Γ0 = τ1 ⊗ 1⊗ 1 ⊗ 1⊗ 1

Γ1 = τ2 ⊗ 1⊗ 1 ⊗ 1 ⊗ 1

Γ2 = τ3 ⊗ τ1 ⊗ 1 ⊗ 1⊗ 1

Γ3 = τ3 ⊗ τ2 ⊗ 1 ⊗ 1⊗ 1

...

Γ8 = τ3 ⊗ τ3 ⊗ τ3 ⊗ τ3 ⊗ τ1

Γ9 = τ3 ⊗ τ3 ⊗ τ3 ⊗ τ3 ⊗ τ2

(A.1)

The charge conjugation matrix C satisfies

CΓMC−1 = −(ΓM )t with Ct = −C , (A.2)

and in the above representation is

C = τ2 ⊗ τ1 ⊗ τ2 ⊗ τ1 ⊗ τ2 . (A.3)

The charge conjugation matrix is used to raise and lower the 32-dimensional spinor indices

(Â, B̂, . . .) of the Γ-matrices according to

(ΓM )
bA bB ≡ (ΓM )

bA
bC (C−1)

bC bB and (ΓM ) bA bB ≡ (C) bAbC (ΓM )
bC

bB . (A.4)

The chirality matrix is defined by

ΓE
(11) = −i Γ0Γ1 . . .Γ9 = τ3 ⊗ τ3 ⊗ τ3 ⊗ τ3 ⊗ τ3 . (A.5)

The above expressions are useful to obtain the factorization of the d = 10 matrices

when the ten-dimensional space is split into 4 + 6. In fact, by writing

Γµ = γµ ⊗ 1 , Γm = γ(5) ⊗ γm , ΓE
(11) = γ(5) ⊗ γ(7) , C = C4 ⊗ C6 , (A.6)

we can read off the explicit representation of the Dirac matrices γµ and γm for d = 4 and

d = 6, respectively, of the corresponding chirality matrices γ(5) and γ(7), and of the charge

conjugation matrices C4 and C6.
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2~ǫ chirality

(++) +

(−+) −
(+−) −
(−−) +

Table 6: Ordering of spinor indices in four dimensions.

Γ-matrices in four dimensions. The d = 4 matrices γµ which can be read from

eqs. (A.1) and (A.6), are

γ0 = τ1 ⊗ 1 , γ1 = τ2 ⊗ 1 , γ2 = τ3 ⊗ τ1 , γ3 = τ3 ⊗ τ2 , (A.7)

while the chirality and charge conjugation matrices are

γ(5) = − γ0γ1γ2γ3 = τ3 ⊗ τ3 and C4 = τ2 ⊗ τ1 . (A.8)

In this tensor product basis the four spinor indices are ordered as in table 6. However, it is

often useful to rearrange them in order to have first the two chiral indices α ∈ {(++), (−−)}
and then the two anti-chiral ones α̇ ∈ {(−+), (+−)}, in such a way that the chirality matrix

takes the more conventional form γ(5) = 1 ⊗ τ3. With such a rearrangement the above

Euclidean Dirac matrices γµ become

γµ =

(
0 σµ

σµ 0

)
(A.9)

with σµ =
(
1, −iτ3, iτ2, −iτ1

)
and σµ =

(
1, iτ3, −iτ2, iτ1

)
. The matrices

(
σµ
)
αβ̇

and
(
σµ
)α̇β

act on spinors of definite chirality ψα and ψα̇ as

(
σµ
)
αβ̇
ψβ̇ and

(
σµ
)α̇β

ψβ . (A.10)

After the rearrangement of indices, the charge conjugation matrix becomes

C4 = τ2 ⊗ τ3 ; (A.11)

thus it is block diagonal with
(
C4

)αβ
= −i ǫαβ and

(
C4

)
α̇β̇

= i ǫα̇β̇ .

Γ-matrices in six dimensions. The d = 6 matrices γm which can be read from

eqs. (A.1) and (A.6), are

γ4 = τ1 ⊗ 1 ⊗ 1 , γ5 = τ2 ⊗ 1⊗ 1 , γ6 = τ3 ⊗ τ1 ⊗ 1

γ7 = τ3 ⊗ τ2 ⊗ 1 , γ8 = τ3 ⊗ τ3 ⊗ τ1 , γ9 = τ3 ⊗ τ3 ⊗ τ2
(A.12)

while the corresponding chirality and charge conjugation matrices are

γ(7) = i γ4γ5 . . . γ9 = τ3 ⊗ τ3 ⊗ τ3 and C6 = τ2 ⊗ τ1 ⊗ τ2 . (A.13)
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2~ǫ chirality

(+ + +) +

(− + +) −
(+ − +) −
(−− +) +

(+ + −) −
(− + −) +

(+ −−) +

(−−−) −
Table 7: Ordering of spinor indices in six dimensions.

In this case the eight spinor indices are ordered according to table 7. but again they can

be rearranged in such a way to put first the chiral ones and then the anti-chiral ones, and

have the chirality matrix in the standard form γ(7) = 1⊗1⊗ τ3. In this basis the matrices

γm C−1
6 may be written in the block diagonal form

γm C−1
6 =

(
Σm 0

0 Σ
m

)
(A.14)

where (Σm)AB and (Σ
m

)AB are 4 × 4 anti-symmetric matrices.

If we order the four chiral indices as {(+++), (+−−), (−+−), (−−+)} and the four

anti-chiral indices as {(−−−), (−++), (+−+), (++−)} (see also eq. (9) below), we have

Σm =
(
η3,−iη3, η2,−iη2, η1, iη1

)
,

Σ
m

=
(
η3, iη3,−η2,−iη2, η1,−iη1

)
,

(A.15)

where ηc and ηc are, respectively, the self-dual and anti-self-dual ’t Hooft symbols. Pro-

ceeding in a similar way for the antisimmetrized product of three matrices, we find

γmnpC−1
6 =

(
Σmnp 0

0 Σ
mnp

)
, (A.16)

where (Σmnp)AB and (Σ
mnp

)AB the 4 × 4 symmetric matrices that appear in section 3.

Using the properties of the chirality and charge conjugation matrices, it is easy to show

the following imaginary self-duality properties

∗6Σ
mnp = −i Σmnp , ∗6Σ

mnp
= +iΣ

mnp
. (A.17)

Useful formulas. The previous formulas allow us to obtain the explicit expressions for

the fermion bilinears which have been discussed in sections 2 and 3. In this respect we

point out that in writing a fermion bilinear, like the one appearing for instance in eq. (3.9),

we always understand the inverse charge conjugation matrix C−1. The precise expression

of the bilinear is then

ΘΓmnpΘ ≡ ΘA (ΓmnpC−1)AB ΘB . (A.18)
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Using the 4+6 decomposition discussed above, we obtain

ΓmnpC−1 =
(
γ(5)C

−1
4

)
⊗
(
γmnpC−1

6

)
=

(
τ2 0

0 τ2

)
⊗
(

Σmnp 0

0 Σ
mnp

)
, (A.19)

so that eq. (A.18) can be rewritten as

ΘA (ΓmnpC−1)AB ΘB = −i ΘαA ǫαβΘβB(Σ
mnp

)AB − i Θα̇A ǫ
α̇β̇Θβ̇B(Σmnp)AB (A.20)

which coincides with eq. (3.39).

Finally, we observe that the natural ordering, given in table 7, of the spinor indices for

the tensor product representation (A.12) is particularly convenient if one uses the complex

basis in the internal six-dimensional space. Indeed, computing the holomorphic and anti-

holomorphic products γ123 and γ1̄2̄3̄ and combining them with the charge conjugation

matrix we find

γ123 C−1
6 = −

(
0 0

0 1

)
⊗
(

0 0

0 1

)
⊗
(

0 0

0 1

)

γ1̄2̄3̄C−1
6 = +

(
1 0

0 0

)
⊗
(

1 0

0 0

)
⊗
(

1 0

0 0

) (A.21)

from which we immediately see that Σ123 = Σ
1̄2̄3̄

= 0 and that the only non-vanishing

entries of the matrices Σ1̄2̄3̄ and Σ
123

are, respectively, the upper most left and the lower

most right, that is

(
Σ1̄2̄3̄)+++,+++ = 1 and

(
Σ

123)
−−−,−−− = −1 . (A.22)

A.2 The orbifold T6/(Z2 × Z2)

The orbifold group Z2 × Z2 acting on the orthonormal complex coordinates Zi of T6 as in

table 4 is a discrete subgroup of SO(6) that contains 4 elements hI (I = 0, 1, 2, 3), with

h0 ≡ e being the identity element, and

h1 = eiπ(J3−J2) , h2 = eiπ(J1−J3) , h3 ≡ h1h2 = eiπ(J1−J2) (A.23)

where J1,2,3 are the generators of rotations in the 4-5, 6-7 and 8-9 planes respectively.

We may summarize the transformation properties for the conformal fields ∂Zi and Ψi

(i = 1, 2, 3) in the Neveu-Schwarz sector by means of the following table:

conf. field irrep

∂Zi, Ψi Ri
, (A.24)

where {RA} = {R0, Ri} are the irreducible representations of Z2×Z2, identified by writing

the character table (Ch)IA = tr RA

(
hI
)

of the group, given in table 8. The Clebsch-Gordan

series for these representations is simply given by

R0 ⊗RA = RA , Ri ⊗Rj = δijR0 + |ǫijk|Rk , (A.25)
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e h1 h2 h3

R0 1 1 1 1

R1 1 1 −1 −1

R2 1 −1 1 −1

R3 1 −1 −1 1

Table 8: Character table of the group Z2 × Z2.

irrep RA SA SA

R0 S0 ≡ S+++ S0 ≡ S−−−

R1 S1 ≡ S+−− S1 ≡ S−++

R2 S2 ≡ S−+− S2 ≡ S+−+

R3 S3 ≡ S−−+ S3 ≡ S++−

Table 9: Transformation properties of the spin fields with respect to the orbifold group.

and is crucial in determining the open string spectrum.

Recall that through the bosonization procedure [60] the chiral spin fields SA ∼ ei~ǫ A·~ϕ of

SO(6) and the anti-chiral ones SA ∼ ei~ǫ A·~ϕ are associated respectively to the SO(6) spinor

weights ~ǫA = 1
2(±,±,±) with the product of signs being positive, and ~ǫA = 1

2(±,±,±) with

the product of signs being negative. Using this information, we easily deduce from (A.23)

the transformation properties of the various spin fields, which are summarized in table 9.

In other words, we can order the internal spinor indices so that SA and SA transform in

the irrep RA.

Closed strings on the orbifold have different sectors. The untwisted sector simply

contains the closed string states defined on the covering space T6 which are invariant under

the orbifold action. The twisted sectors are in correspondence with the 16 fixed planes

(a = 1, . . . , 16) of the action of a nontrivial element hi. The vertex operators in a twisted

sector contain left- and right-moving twist fields ∆i
a(z) and ∆̃i

a(z), and must be invariant

under the orbifold. If, as explained in the main text, we assume that the orbifold group

does not act on the twist fields, it is not difficult to write down all the massless vertices.

Let us also notice that the orbifold projection leaves only two bulk supercharges, whose

Weyl components in the −1/2 picture are

Qα =

∮
dz

2πi
SαS0 e−

φ
2 (z) , Qα̇ =

∮
dz

2πi
Sα̇S0 e−

φ
2 (z) (A.26)

for the left-moving ones, and

Q̃α =

∮
dz̄

2πi
S̃αS̃0 e−

φ̃
2 (z) , Q̃α̇ =

∮
dz̄

2πi
S̃α̇S̃0 e−

φ̃
2 (z) (A.27)

for the right-moving ones.
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A.3 Soft supersymmetry breaking on fractional D9 branes

In the orbifold T6/Z2×Z2, we can realize an N = 1 d = 4 gauge theory using fractional D9

branes that completely wrap the internal compact space. Such brane configuration pre-

serves a different N = 1 supersymmetry with respect to the fractional D3 branes considered

in section 5.2, and thus the moduli fields organize into chiral multiplets with respect to this

new supersymmetry. The bulk Lagrangian (which is in fact the same since we have not

changed the compactification manifold) can be rewritten in terms of these multiplets via a

different Kähler potential and superpotential. Again, this allows to relate the flux-induced

gaugino mass term to the value of the auxiliary component of the gauge kinetic function.

For the reasons already explained in the case of D3 branes, we are interested mostly in

the untwisted couplings, which can be deduced by reducing to four dimensions the usual

DBI-WZ action of a D9 brane on T6/(Z2 × Z2) given by

−T9

∫

D3

∫

T6/(Z2×Z2)
e−ϕ

√
−det(G(10) + F) + T9

∫

D3

∫

T6/(Z2×Z2)

5∑

n=0

C2n eF (A.28)

where T9 = (4π)−1(2πα′)−2(2π
√
α′)−6. From this expression it follows that the quadratic

part in the gauge fields F , after promoting the latter to the non-abelian case and switching

to the Einstein frame, is

−eϕ/2V
32π

∫

D3

d4xTr
(
FµνF

µν
)

+
C̃

32π

∫

D3

d4xTr
(
Fµν

∗Fµν
)
, (A.29)

where C̃ is19 ∫

T6/(Z2×Z2)
C6 =

1

4
(2π

√
α′)−6 C̃ . (A.30)

Comparing with eq. (5.4), we see that the untwisted part of the gauge kinetic function f
(9)
A

for any type A of fractional D9 branes reads

f
(9)
A =

s

4
with s = C̃ + ieϕ/2V . (A.31)

In a similar way one can consider D5 branes wrapped on untwisted cycles ei, which preserve

the same supersymmetry of the D9 branes. The way to combine the untwisted moduli into

chiral multiplets is again suggested by the gauge kinetic functions f
(5)
i . Extracting the

quadratic terms in the gauge fields from the wrapped D5-brane DBI-WZ action, it is

straightforward to obtain

f
(5)
i =

1

4
ri with ri ≡ ci + ie−ϕ/2 vi . (A.32)

19This pseudoscalar modulus is in fact related, through the duality between F7 and F3, to the two-form

C2 with indices in the space-time directions. Notice also that
Z

T6/(Z2×Z2)

d6y
p

−g(6) =
1

4
(2π

√
α′)6 e3ϕ/2V

since it corresponds to the internal volume in the string frame, which is related by the factor of e3φ/2 to

the Einstein frame volume V. This explains the prefactor in eq. (A.29).
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Notice that ci and vi are invariant under the O9 orientifold projection appropriate to our

situation.

By supersymmetry, the complex scalars represents the lowest component of a chiral

superfield, and the supersymmetric N = 1 Lagrangian (5.5), contains the coupling of the

gaugino to the auxiliary components of this multiplet. For D9-branes

− i

32π
F s Tr

(
ΛαΛα

)
+ c.c. (A.33)

This has to be compared to the gaugino mass term which follows from the D9 flux coupling

indicated in table 1. To do so we have to adapt the steps used to arrive at eq. (3.44) in

the D3 case, since now the normalization cF contains contains the topological factor C(10)

suitable for D9 disk amplitude, namely [20]

C(10) =
C(4)

(2π
√
α′)6

. (A.34)

On the other hand to obtain the four dimensional couplings, we have to dimensionally

reduce on T6/(Z2 ×Z2), gaining a factor of (2π
√
α′)6 e3ϕ/2 V, to obtain the 4d coupling. In

the end, we find the term

− i

4π
eϕ/2 V (2πα′)−

1
2 NF F(3,0) = − i

4π
eϕ F(3,0) (A.35)

where in the second step we used the normalization of the flux vertex already fixed in

eq. (5.23) so that by comparison with eq. (A.33) the auxiliary field must be given by

F s = 8eϕ F(3,0) . (A.36)

Analogously to what we did in the D3-brane case, we restrict to the slice of moduli

space spanned by s and by the overall scale

r ≡ r1 = r2 = r3 ; (A.37)

this scale is related to the volume by (Im r)3 = e−3ϕ/2 V, as it follows from eq. (5.13). In

this slice of the moduli space the bulk theory can be rewritten in the standard N = 1 form

employing the chiral fields s(θ) and r(θ). The Kähler potential reads

K = − log(Im s) − 3 log(Im r) , (A.38)

and it coincides with eq. (5.19) re-expressed in the new set of variables. The superpotential

is given by

W =
1

κ2
10

∫
F ∧ Ω , (A.39)

where, with respect to eq. (5.20), the O9 projection eliminates the NS-NS flux. It is

straightforward to check that

F
s̄

= −iκ2
4 eK/2K s̄sDsW = 8eϕ F(0,3) , (A.40)

in agreement with eq. (A.36).
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[1] R. Blumenhagen, M. Cvetič, P. Langacker and G. Shiu, Toward realistic intersecting D-brane

models, Ann. Rev. Nucl. Part. Sci. 55 (2005) 71 [hep-th/0502005].
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